Controls on development and diversity of Early Archean stromatolites

被引:170
作者
Allwood, Abigail C. [1 ,2 ]
Grotzinger, John P. [3 ]
Knoll, Andrew H. [4 ]
Burch, Ian W. [2 ]
Anderson, Mark S. [1 ]
Coleman, Max L. [1 ]
Kanik, Isik [1 ]
机构
[1] CALTECH, Jet Prop Lab, NASA, Astrobiol Inst, Pasadena, CA 91109 USA
[2] Univ New S Wales, Australian Ctr Astrobiol, Sydney, NSW 2052, Australia
[3] CALTECH, Dept Geol & Planetary Sci, Pasadena, CA 91125 USA
[4] Harvard Univ, Dept Organism & Evolut Biol, Cambridge, MA 02138 USA
基金
美国国家航空航天局;
关键词
microbe; paleontology; biosignature; carbonate; reef; WARRAWOONA GROUP; PILBARA CRATON; CHERT; MICROFOSSILS;
D O I
10.1073/pnas.0903323106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The approximate to 3,450-million-year-old Strelley Pool Formation in Western Australia contains a reef-like assembly of laminated sedimentary accretion structures (stromatolites) that have macroscale characteristics suggestive of biological influence. However, direct microscale evidence of biology-namely, organic microbial remains or biosedimentary fabrics-has to date eluded discovery in the extensively-recrystallized rocks. Recently-identified outcrops with relatively good textural preservation record microscale evidence of primary sedimentary processes, including some that indicate probable microbial mat formation. Furthermore, we find relict fabrics and organic layers that covary with stromatolite morphology, linking morphologic diversity to changes in sedimentation, seafloor mineral precipitation, and inferred microbial mat development. Thus, the most direct and compelling signatures of life in the Strelley Pool Formation are those observed at the microscopic scale. By examining spatiotemporal changes in microscale characteristics it is possible not only to recognize the presence of probable microbial mats during stromatolite development, but also to infer aspects of the biological inputs to stromatolite morphogenesis. The persistence of an inferred biological signal through changing environmental circumstances and stromatolite types indicates that benthic microbial populations adapted to shifting environmental conditions in early oceans.
引用
收藏
页码:9548 / 9555
页数:8
相关论文
共 32 条
[1]  
ALLWOOD A, 2007, W AUSTR GEOL SURV RE, P11
[2]   3.43 billion-year-old stromatolite reef from the Pilbara Craton of western Australia: Ecosystem-scale insights to early life on Earth [J].
Allwood, Abigail C. ;
Walter, Malcolm R. ;
Burch, Ian W. ;
Kamber, Balz S. .
PRECAMBRIAN RESEARCH, 2007, 158 (3-4) :198-227
[3]   Raman spectroscopy reveals thermal palaeoenvironments of c.3.5 billion-year-old organic matter [J].
Allwood, Abigail C. ;
Walter, Malcolm R. ;
Marshall, Craig P. .
VIBRATIONAL SPECTROSCOPY, 2006, 41 (02) :190-197
[4]   Stromatolite reef from the Early Archaean era of Australia [J].
Allwood, Abigail C. ;
Walter, Malcolm R. ;
Kamber, Balz S. ;
Marshall, Craig P. ;
Burch, Ian W. .
NATURE, 2006, 441 (7094) :714-718
[5]  
ALLWOOD AC, 2008, PALEONTOL SOC PAPERS, V14, P55
[6]  
[Anonymous], 1999, Evaporites: Their Evolution and Economics
[7]  
Awramik Stanley M., 2005, Proceedings of the SPIE - The International Society for Optical Engineering, V5906, p59060P, DOI 10.1117/12.625556
[8]   FILAMENTOUS FOSSIL BACTERIA FROM THE ARCHEAN OF WESTERN AUSTRALIA [J].
AWRAMIK, SM ;
SCHOPF, JW ;
WALTER, MR .
PRECAMBRIAN RESEARCH, 1983, 20 (2-4) :357-374
[10]   Statistical physics and stromatolite growth: new perspectives on an ancient dilemma [J].
Batchelor, MT ;
Burne, RV ;
Henry, BI ;
Slatyer, T .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 350 (01) :6-11