Improved quantitative real-time RT-PCR for expression profiling of individual cells

被引:104
作者
Liss, B
机构
[1] Univ Oxford, Physiol Lab, Oxford OX1 3PT, England
[2] Univ Oxford, MRC, Anat Neuropharmacol Unit, Dept Pharmacol, Oxford OX1 3PT, England
关键词
D O I
10.1093/nar/gnf088
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The real-time quantitative polymerase chain reaction (rtqPCR) has overcome the limitations of conventional, time-consuming quantitative PCR strategies and is maturing into a routine tool to quantify gene expression levels, following reverse transcription (RT) of mRNA into complementary DNA (cDNA). Expression profiling with single-cell resolution is highly desirable, in particular for complex tissues like the brain that contain a large variety of different cell types in close proximity. The patch-clamp technique allows selective harvesting of single-cell cytoplasm after recording of cellular activity. However, components of the cDNA reaction, in particular the reverse transcriptase itself, significantly inhibit subsequent rtqPCR amplification. Using undiluted single-cell cDNA reaction mix directly as template for rtqPCR, I observed that the amplification kinetics of rtqPCRs were dramatically altered in a non-systematic fashion. Here, I describe a simple and robust precipitation protocol suitable for purification of single-cell cDNA that completely removes inhibitory RT components without detectable loss of cDNA. This improved single-cell real-time RT-PCR protocol provides a powerful tool to quantify differential gene expression of individual cells and thus could complement global microarray-based expression profiling strategies.
引用
收藏
页数:9
相关论文
共 40 条
[1]   Purification and characterization of PCR-inhibitory components in blood cells [J].
Abu al-Soud, W ;
Rådström, P .
JOURNAL OF CLINICAL MICROBIOLOGY, 2001, 39 (02) :485-493
[2]  
Al-Taher A, 2000, YEAST, V17, P201, DOI 10.1002/1097-0061(20000930)17:3<201::AID-YEA30>3.0.CO
[3]  
2-R
[4]  
Baro DJ, 1997, J NEUROSCI, V17, P6597
[5]   Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays [J].
Bustin, SA .
JOURNAL OF MOLECULAR ENDOCRINOLOGY, 2000, 25 (02) :169-193
[6]   Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems [J].
Bustin, SA .
JOURNAL OF MOLECULAR ENDOCRINOLOGY, 2002, 29 (01) :23-39
[7]  
Chandler DP, 1998, APPL ENVIRON MICROB, V64, P669
[8]  
Crouse J, 1987, FOCUS, V19, P13
[9]   Real-time quantitative RT-PCR after laser-assisted cell picking [J].
Fink, L ;
Seeger, W ;
Ermert, L ;
Hänze, J ;
Stahl, U ;
Grimminger, F ;
Kummer, W ;
Bohle, RM .
NATURE MEDICINE, 1998, 4 (11) :1329-1333
[10]   Quantitative RT-PCR: Pitfalls and potential [J].
Freeman, WM ;
Walker, SJ ;
Vrana, KE .
BIOTECHNIQUES, 1999, 26 (01) :112-+