An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman equation

被引:68
作者
Grune, L
机构
[1] Institut für Mathematik, Universität Augsburg, D-86135 Augsburg
关键词
D O I
10.1007/s002110050241
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper an adaptive finite difference scheme for the solution of the discrete first order Hamilton-Jacobi-Bellman equation is presented, Local a posteriori error estimates are established and certain properties of these estimates are proved. Based on these estimates an adapting iteration for the discretization of the state space is developed. An implementation of the scheme for two-dimensional grids is given and numerical examples are discussed.
引用
收藏
页码:319 / 337
页数:19
相关论文
共 20 条
[1]   A FEEDBACK FINITE-ELEMENT METHOD WITH A POSTERIORI ERROR ESTIMATION .1. THE FINITE-ELEMENT METHOD AND SOME BASIC PROPERTIES OF THE A POSTERIORI ERROR ESTIMATOR [J].
BABUSKA, I ;
MILLER, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1987, 61 (01) :1-40
[2]   MINIMAL AND MAXIMAL LYAPUNOV EXPONENTS OF BILINEAR CONTROL-SYSTEMS [J].
COLONIUS, F ;
KLIEMANN, W .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 101 (02) :232-275
[3]   ASYMPTOTIC-BEHAVIOR OF OPTIMAL-CONTROL SYSTEMS WITH LOW DISCOUNT RATES [J].
COLONIUS, F .
MATHEMATICS OF OPERATIONS RESEARCH, 1989, 14 (02) :309-316
[4]  
COLONIUS F, IN PRESS T AMS
[5]  
COLONIUS F, 1995, GEOMETRY NONLINEAR C, V32, P139
[6]   APPROXIMATE SOLUTIONS OF THE BELLMAN EQUATION OF DETERMINISTIC CONTROL-THEORY [J].
DOLCETTA, IC ;
ISHII, H .
APPLIED MATHEMATICS AND OPTIMIZATION, 1984, 11 (02) :161-181
[7]   ON A DISCRETE APPROXIMATION OF THE HAMILTON-JACOBI EQUATION OF DYNAMIC-PROGRAMMING [J].
DOLCETTA, IC .
APPLIED MATHEMATICS AND OPTIMIZATION, 1983, 10 (04) :367-377
[8]  
FAERMANN B, 1993, THESIS U KIEL
[9]  
FALCONE M, 1991, APPL MATH OPT, V15, P1
[10]  
FALCONE M, 1991, APPL MATH OPT, V23, P213