An overview of regression techniques for knowledge discovery

被引:44
作者
Uysal, I [1 ]
Güvenir, HA [1 ]
机构
[1] Bilkent Univ, Dept Comp Engn & Informat Sci, TR-06533 Ankara, Turkey
关键词
D O I
10.1017/S026988899900404X
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Predicting or learning numeric features is called regression in the statistical literature, and it is the subject of research in both machine learning and statistics. This paper reviews the important techniques and algorithms for regression developed by both communities. Regression is important for many applications, since lots of real life problems can be modeled as regression problems. The review includes Locally Weighted Regression (LWR), rule-based regression, Projection Pursuit Regression (PPR), instance-based regression, Multivariate Adaptive Regression Splines (MARS) and recursive partitioning regression methods that induce regression trees (CART, RETIS and M5).
引用
收藏
页码:319 / 340
页数:22
相关论文
共 33 条
[1]  
ADELI H, 1990, KNOWLEDGE ENG, V1
[2]  
AHA DW, 1991, MACH LEARN, V6, P37, DOI 10.1007/BF00153759
[3]  
AHA DW, 1994, SELECTING MODELS DAT, V4
[4]  
[Anonymous], 1992, Proceedings of the 5th Australian Joint Conference on Artificial Intelligence (AI'92), DOI DOI 10.1142/9789814536271
[5]  
Atkeson CG, 1997, ARTIF INTELL REV, V11, P11, DOI 10.1023/A:1006559212014
[6]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669
[7]  
Dasarathy B.V., 1991, IEEE COMPUTER SOC TU
[8]  
de Boor C., 2001, A Practical Guide to Splines
[9]  
Duda R.O., 1973, Pattern classification
[10]   The KDD process for extracting useful knowledge from volumes of data [J].
Fayyad, U ;
PiatetskyShapiro, G ;
Smyth, P .
COMMUNICATIONS OF THE ACM, 1996, 39 (11) :27-34