A Kir6.2 mutation causing neonatal diabetes impairs electrical activity and insulin secretion from INS-1 β-cells

被引:33
作者
Tarasov, Andrei I.
Welters, Hannah J.
Senkel, Sabine
Ryffel, Gerhart U.
Hattersley, Andrew T.
Morgan, Noel G.
Ashcroft, Frances M.
机构
[1] Univ Oxford, Physiol Lab, Oxford OX1 3PT, England
[2] Peninsula Med Sch, Inst Biomed & Clin Sci, Plymouth, Devon, England
[3] Univ Essen Gesamthsch, Inst Cell Biol, D-4300 Essen 1, Germany
基金
英国惠康基金;
关键词
D O I
10.2337/db06-0637
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
ATP-sensitive K+ channels (K-ATP channels) couple beta-cell metabolism to electrical activity and thereby play an essential role in the control of insulin secretion. Gain-of-function mutations in Kir6.2 (KCNJ11), the pore-forming subunit of this channel, cause neonatal diabetes. We investigated the effect of the most common neonatal diabetes mutation (R201H) on beta-cell electrical activity and insulin secretion by stable transfection in the INS-1 cell line. Expression was regulated by placing the gene under the control of a tetracycline promoter. Transfection with wildtype Kir6.2 had no effect on the ATP sensitivity of the KATP channel, whole-cell KATP current magnitude, or insulin secretion. However, induction of Kir6.2-R201H expression strongly reduced KATP channel ATP sensitivity (the half-maximal inhibitory concentration increased from similar to 20 mu mol/l to similar to 2 mmol/l), and the metabolic substrate methyl succinate failed to close K-ATP channels or stimulate electrical activity and insulin secretion. Thus, these results directly demonstrate that Kir6.2 mutations prevent electrical activity and insulin release from INS-1 cells by increasing the KATP current and hyperpolarizing the beta-cell membrane. This is consistent with the ability of the R201H mutation to cause neonatal diabetes in patients. The relationship between KATP current and the membrane potential reveals that very small changes in current amplitude are sufficient to prevent hormone secretion.
引用
收藏
页码:3075 / 3082
页数:8
相关论文
共 35 条
[1]   Type 2 diabetes mellitus: not quite exciting enough? [J].
Ashcroft, F ;
Rorsman, P .
HUMAN MOLECULAR GENETICS, 2004, 13 :R21-R31
[2]   GLUCOSE INDUCES CLOSURE OF SINGLE POTASSIUM CHANNELS IN ISOLATED RAT PANCREATIC BETA-CELLS [J].
ASHCROFT, FM ;
HARRISON, DE ;
ASHCROFT, SJH .
NATURE, 1984, 312 (5993) :446-448
[3]   ATP-SENSITIVE K+ CHANNELS IN RAT PANCREATIC BETA-CELLS - MODULATION BY ATP AND MG-2+ IONS [J].
ASHCROFT, FM ;
KAKEI, M .
JOURNAL OF PHYSIOLOGY-LONDON, 1989, 416 :349-367
[4]   ELECTROPHYSIOLOGY OF THE PANCREATIC BETA-CELL [J].
ASHCROFT, FM ;
RORSMAN, P .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1989, 54 (02) :87-143
[5]   ATP-sensitive potassium channelopathies: focus on insulin secretion [J].
Ashcroft, FM .
JOURNAL OF CLINICAL INVESTIGATION, 2005, 115 (08) :2047-2058
[6]   Relapsing diabetes can result from moderately activating mutations in KCNJ11 [J].
Gloyn, AL ;
Reimann, F ;
Proks, P ;
Pearson, ER ;
Temple, IK ;
Mackay, DJG ;
Shield, JPH ;
Freedenberg, D ;
Noyes, K ;
Ellard, S ;
Ashcroft, FM ;
Gribble, FM ;
Hattersley, AT .
HUMAN MOLECULAR GENETICS, 2005, 14 (07) :925-934
[7]   Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes [J].
Gloyn, AL ;
Pearson, ER ;
Antcliff, JF ;
Proks, P ;
Bruining, GJ ;
Slingerland, AS ;
Howard, N ;
Srinivasan, S ;
Silva, JMCL ;
Molnes, J ;
Edghill, EL ;
Frayling, TM ;
Temple, IK ;
Mackay, D ;
Shield, JPH ;
Sumnik, Z ;
van Rhijn, A ;
Wales, JKH ;
Clark, P ;
Gorman, S ;
Aisenberg, J ;
Ellard, S ;
Njolstad, PR ;
Ashcroft, FM ;
Hattersley, AT .
NEW ENGLAND JOURNAL OF MEDICINE, 2004, 350 (18) :1838-1849
[8]   Voltage-gated and resting membrane currents recorded from B-cells in intact mouse pancreatic islets [J].
Göpel, S ;
Kanno, T ;
Barg, S ;
Galvanovskis, J ;
Rorsman, P .
JOURNAL OF PHYSIOLOGY-LONDON, 1999, 521 (03) :717-728
[9]   The interaction of nucleotides with the tolbutamide block of cloned ATP-sensitive K+ channel currents expressed in Xenopus oocytes: a reinterpretation [J].
Gribble, FM ;
Tucker, SJ ;
Ashcroft, FM .
JOURNAL OF PHYSIOLOGY-LONDON, 1997, 504 (01) :35-45
[10]   Properties of cloned ATP-sensitive K+ currents expressed in Xenopus oocytes [J].
Gribble, FM ;
Ashfield, R ;
Ammala, C ;
Ashcroft, FM .
JOURNAL OF PHYSIOLOGY-LONDON, 1997, 498 (01) :87-98