Direct involvement of phosphatidylinositol 4-phosphate in secretion in the yeast Saccharomyces cerevisiae

被引:246
作者
Hama, H
Schnieders, EA
Thorner, J
Takemoto, JY
DeWald, DB [1 ]
机构
[1] Utah State Univ, Dept Biol, Logan, UT 84322 USA
[2] Univ Calif Berkeley, Dept Mol & Cell Biol, Div Biochem & Mol Biol, Berkeley, CA 94720 USA
关键词
D O I
10.1074/jbc.274.48.34294
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The SEC14 gene encodes an essential phosphatidylinositol (PtdIns) transfer protein required for formation of Golgi-derived secretory vesicles in yeast. Suppressor mutations that rescue temperature-sensitive sec14 mutants provide an approach for determining the role of Sec14p in secretion. One suppressor, sac1-22, causes accumulation of PtdIns(4)P. SAC1 encodes a phosphatase that can hydrolyze PtdIns(4)P and certain other phosphoinositides. These findings suggest that PtdIns(4)P is limiting in sec14 cells and that elevation of PtdIns(4)P production can suppress the secretory defect. Correspondingly, we found that PtdIns(4)P levels were decreased significantly in sec14-3 mutants shifted to 37 degrees C and that sec14-3 cells could grow at an otherwise non-permissive temperature (34 degrees C) when carrying a plasmid overexpressing PIK1, encoding one of two essential PtdIns 4-kinases. This effect is specific because overexpression of the other PtdIns 4-kinase gene (STT4) or a PtdIns 3-kinase gene (VPS34) did not rescue sec14-3 cells. To further address Pik1p function in secretion, two different pik1(ts) mutants were examined. Upon shift to restrictive temperature (37 degrees C), the PtdIns(4)P levels dropped by about 60% in both pik1(ts) strains within 1 h. During the same period, cells displayed a reduction (40-50%) in release of a secreted enzyme (invertase), However, similar treatment did not effect maturation of a vacuolar enzyme (carboxypeptidase Y). These findings indicate that, first, PtdIns(4)P limitation is a major contributing factor to the secretory defect in sec14 cells; second, Sec14p function is coupled to the action of Pik1p, and; third, PtdIns(4)P has an important role in the Golgi-to-plasma membrane stage of secretion.
引用
收藏
页码:34294 / 34300
页数:7
相关论文
共 66 条
  • [1] THE SACCHAROMYCES-CEREVISIAE SEC14 GENE ENCODES A CYTOSOLIC FACTOR THAT IS REQUIRED FOR TRANSPORT OF SECRETORY PROTEINS FROM THE YEAST GOLGI-COMPLEX
    BANKAITIS, VA
    MALEHORN, DE
    EMR, SD
    GREENE, R
    [J]. JOURNAL OF CELL BIOLOGY, 1989, 108 (04) : 1271 - 1281
  • [2] AN ESSENTIAL ROLE FOR A PHOSPHOLIPID TRANSFER PROTEIN IN YEAST GOLGI FUNCTION
    BANKAITIS, VA
    AITKEN, JR
    CLEVES, AE
    DOWHAN, W
    [J]. NATURE, 1990, 347 (6293) : 561 - 562
  • [3] Vacuole biogenesis in Saccharomyces cerevisiae:: Protein transport pathways to the yeast vacuole
    Bryant, NJ
    Stevens, TH
    [J]. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1998, 62 (01) : 230 - +
  • [4] Novel pathways, membrane coats and PI kinase regulation in yeast lysosomal trafficking
    Burd, CG
    Babst, M
    Emr, SD
    [J]. SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 1998, 9 (05) : 527 - 533
  • [5] MULTIFUNCTIONAL YEAST HIGH-COPY-NUMBER SHUTTLE VECTORS
    CHRISTIANSON, TW
    SIKORSKI, RS
    DANTE, M
    SHERO, JH
    HIETER, P
    [J]. GENE, 1992, 110 (01) : 119 - 122
  • [6] MUTATIONS IN THE SAC1 GENE SUPPRESS DEFECTS IN YEAST GOLGI AND YEAST ACTIN FUNCTION
    CLEVES, AE
    NOVICK, PJ
    BANKAITIS, VA
    [J]. JOURNAL OF CELL BIOLOGY, 1989, 109 (06) : 2939 - 2950
  • [7] MUTATIONS IN THE CDP CHOLINE PATHWAY FOR PHOSPHOLIPID BIOSYNTHESIS BYPASS THE REQUIREMENT FOR AN ESSENTIAL PHOSPHOLIPID TRANSFER PROTEIN
    CLEVES, AE
    MCGEE, TP
    WHITTERS, EA
    CHAMPION, KM
    AITKEN, JR
    DOWHAN, W
    GOEBL, M
    BANKAITIS, VA
    [J]. CELL, 1991, 64 (04) : 789 - 800
  • [8] The lipid transfer activity of phosphatidylinositol transfer protein is sufficient to account for enhanced phospholipase C activity in turkey erythrocyte ghosts
    Currie, RA
    MacLeod, BMG
    Downes, CP
    [J]. CURRENT BIOLOGY, 1997, 7 (03) : 184 - 190
  • [9] LIPID TRANSPORT IN MICROORGANISMS
    DAUM, G
    PALTAUF, F
    [J]. EXPERIENTIA, 1990, 46 (06): : 586 - 592
  • [10] Daum G, 1998, YEAST, V14, P1471, DOI 10.1002/(SICI)1097-0061(199812)14:16<1471::AID-YEA353>3.0.CO