Inwardly rectifying K+ channels in freshly dissociated coronary endothelial cells from guinea-pig heart

被引:47
作者
vonBeckerath, N [1 ]
Dittrich, M [1 ]
Klieber, HG [1 ]
Daut, J [1 ]
机构
[1] UNIV MARBURG,INST NORMALE & PATHOL PHYSIOL,D-35033 MARBURG,GERMANY
来源
JOURNAL OF PHYSIOLOGY-LONDON | 1996年 / 491卷 / 02期
关键词
D O I
10.1113/jphysiol.1996.sp021221
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
1. Inwardly rectifying K+ (I-K(IR)) currents of freshly dissociated coronary endothelial cells from guinea-pig heart were investigated with the perforated-patch technique. 2. The whole-cell current-voltage relationship of endothelial cells showed strong inward rectification. Increasing the extracellular K+ resulted in an increase of inward currents. The slope conductance of the cells in the potential range negative to the calculated potassium equilibrium potential (E(K)) with 5, 60 and 150 mM external potassium was 0.18 +/- 0.14, 0.55 +/- 0.50 and 0.63 +/- 0.29 nS (mean +/- S.D.), respectively. 3. To quantify the steepness of inward rectification, the voltage dependence of the chord conductance of the cells was fitted with a Boltzmann function. The slope factor k describing the steepness of the relationship was 6.8 +/- 1.5 mV. 4. Extracellular barium induced a potential- and time-dependent block of inward currents through endothelial K-IR channels. Half-maximum inhibition of I-K(IR) currents was achieved with less than or equal to 1 mu M barium at a membrane potential of - 70 mV in a solution containing 60 mM K+. 5. Whole-cell inward currents revealed the opening and closing of single K-IR channels. The single-channel conductance was 26 +/- 3 pS with 60 mM external K+ and 33 +/- 6 pS with 150 mM external K+. 6. Our results suggest that the electrical properties of freshly dissociated endothelial cells are to a large extent determined by five to sixty active strong inwardly rectifying K+ (K-IR) channels.
引用
收藏
页码:357 / 365
页数:9
相关论文
共 41 条
[1]   ION CHANNELS AND REGULATION OF INTRACELLULAR CALCIUM IN VASCULAR ENDOTHELIAL-CELLS [J].
ADAMS, DJ ;
BARAKEH, J ;
LASKEY, R ;
VANBREEMEN, C .
FASEB JOURNAL, 1989, 3 (12) :2389-2400
[2]   BIDIRECTIONAL ELECTRICAL COMMUNICATION BETWEEN SMOOTH-MUSCLE AND ENDOTHELIAL-CELLS IN THE PIG CORONARY-ARTERY [J].
BENY, JL ;
PACICCA, C .
AMERICAN JOURNAL OF PHYSIOLOGY, 1994, 266 (04) :H1465-H1472
[3]   ENDOTHELIAL AND SMOOTH-MUSCLE CELLS HYPERPOLARIZED BY BRADYKININ ARE NOT DYE COUPLED [J].
BENY, JL .
AMERICAN JOURNAL OF PHYSIOLOGY, 1990, 258 (03) :H836-H841
[4]  
BOND CT, 1994, RECEPTOR CHANNEL, V2, P183
[5]   BRADYKININ-EVOKED CHANGES IN CYTOSOLIC CALCIUM AND MEMBRANE CURRENTS IN CULTURED BOVINE PULMONARY-ARTERY ENDOTHELIAL-CELLS [J].
CANNELL, MB ;
SAGE, SO .
JOURNAL OF PHYSIOLOGY-LONDON, 1989, 419 :555-568
[6]   BRADYKININ-INDUCED INCREASES IN CYTOSOLIC CALCIUM AND IONIC CURRENTS IN CULTURED BOVINE AORTIC ENDOTHELIAL-CELLS [J].
COLDENSTANFIELD, M ;
SCHILLING, WP ;
RITCHIE, AK ;
ESKIN, SG ;
NAVARRO, LT ;
KUNZE, DL .
CIRCULATION RESEARCH, 1987, 61 (05) :632-640
[7]   THE ROLE OF THE MEMBRANE-POTENTIAL OF ENDOTHELIAL AND SMOOTH-MUSCLE CELLS IN THE REGULATION OF CORONARY BLOOD-FLOW [J].
DAUT, J ;
STANDEN, NB ;
NELSON, MT .
JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 1994, 5 (02) :154-181
[8]   PASSIVE ELECTRICAL-PROPERTIES AND ELECTROGENIC SODIUM-TRANSPORT OF CULTURED GUINEA-PIG CORONARY ENDOTHELIAL-CELLS [J].
DAUT, J ;
MEHRKE, G ;
NEES, S ;
NEWMAN, WH .
JOURNAL OF PHYSIOLOGY-LONDON, 1988, 402 :237-254
[9]  
DITTRICH M, 1995, PFLUG ARCH S1, V429, pR116
[10]   A STRUCTURAL DETERMINANT OF DIFFERENTIAL SENSITIVITY OF CLONED INWARD RECTIFIER K+ CHANNELS TO INTRACELLULAR SPERMINE [J].
FAKLER, B ;
BRANDLE, U ;
BOND, C ;
GLOWATZKI, E ;
KONIG, C ;
ADELMAN, JP ;
ZENNER, HP ;
RUPPERSBERG, JP .
FEBS LETTERS, 1994, 356 (2-3) :199-203