Peres-Horodecki separability criterion for continuous variable systems

被引:1817
作者
Simon, R [1 ]
机构
[1] Inst Math Sci, Tharamani 600113, Chennai, India
关键词
D O I
10.1103/PhysRevLett.84.2726
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Peres-Horodecki criterion of positivity under partial transpose is studied in the context of separability of bipartite continuous variable states. The partial transpose operation admits, in the continuous case, a geometric interpretation as mirror reflection in phase space. This recognition lends to uncertainty principles, stronger than the traditional ones, to be obeyed by all separable states. For all bipartite Gaussian states, the Peres-Horodecki criterion turns out to be a necessary and sufficient condition for separability.
引用
收藏
页码:2726 / 2729
页数:4
相关论文
共 23 条
[1]   QUANTUM INFORMATION AND COMPUTATION [J].
BENNETT, CH .
PHYSICS TODAY, 1995, 48 (10) :24-30
[2]   Quantum error correction for communication with linear optics [J].
Braunstein, SL .
NATURE, 1998, 394 (6688) :47-49
[3]   Teleportation of continuous quantum variables [J].
Braunstein, SL ;
Kimble, HJ .
PHYSICAL REVIEW LETTERS, 1998, 80 (04) :869-872
[4]  
BRAUNSTEIN SL, QUANTPH9904002
[5]   QUANTUM COMPUTATION [J].
DIVINCENZO, DP .
SCIENCE, 1995, 270 (5234) :255-261
[6]   Inseparability criterion for continuous variable systems [J].
Duan, LM ;
Giedke, G ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 2000, 84 (12) :2722-2725
[7]   Unconditional quantum teleportation [J].
Furusawa, A ;
Sorensen, JL ;
Braunstein, SL ;
Fuchs, CA ;
Kimble, HJ ;
Polzik, ES .
SCIENCE, 1998, 282 (5389) :706-709
[8]   Separability criterion and inseparable mixed states with positive partial transposition [J].
Horodecki, P .
PHYSICS LETTERS A, 1997, 232 (05) :333-339
[9]   Quantum computation over continuous variables [J].
Lloyd, S ;
Braunstein, SL .
PHYSICAL REVIEW LETTERS, 1999, 82 (08) :1784-1787
[10]  
MILBURN GJ, QUANTPH9812018