A variational method for the recovery of smooth boundaries

被引:37
作者
March, R [1 ]
Dozio, M [1 ]
机构
[1] UNIV PISA, DIPARTIMENTO MATEMAT APPL, I-56126 PISA, ITALY
关键词
active contour models; discontinuity detection; image segmentation;
D O I
10.1016/S0262-8856(97)00002-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Variational methods for image segmentation try to recover a piecewise smooth function together with a discontinuity set which represents the boundaries of the segmentation. This paper deals with a variational method that constrains the formation of discontinuities along smooth contours. The functional to be minimized, which involves the computation of the geometrical properties of the boundaries, is approximated by a sequence of functionals which can be discretized in a straightforward way. Computer examples of real images are presented to illustrate the feasibility of the method. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:705 / 712
页数:8
相关论文
共 33 条
  • [1] APPROXIMATION OF FUNCTIONALS DEPENDING ON JUMPS BY ELLIPTIC FUNCTIONALS VIA GAMMA-CONVERGENCE
    AMBROSIO, L
    TORTORELLI, VM
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1990, 43 (08) : 999 - 1036
  • [2] AMBROSIO L, 1992, B UNIONE MAT ITAL, V6B, P105
  • [3] Bellettini G., 1993, SEM AN MAT DIP MAT U
  • [4] Bellettini G., 1993, ANN SCUOLA NORM SUP, V20, P247
  • [5] Blake A., 1987, Visual Reconstruction
  • [6] Cahn J. M., 1996, Euro. J. Appl. Math., V7, P287, DOI DOI 10.1017/S0956792500002369
  • [7] A GEOMETRIC MODEL FOR ACTIVE CONTOURS IN IMAGE-PROCESSING
    CASELLES, V
    CATTE, F
    COLL, T
    DIBOS, F
    [J]. NUMERISCHE MATHEMATIK, 1993, 66 (01) : 1 - 31
  • [8] ON ACTIVE CONTOUR MODELS AND BALLOONS
    COHEN, LD
    [J]. CVGIP-IMAGE UNDERSTANDING, 1991, 53 (02): : 211 - 218
  • [9] Dal Maso G., 1993, PROGR NONLINEAR DIFF, V8
  • [10] DEGIORGI E, 1991, PROG NONLIN, V5, P135