A Bayesian approach to geometric subspace estimation

被引:34
作者
Srivastava, A [1 ]
机构
[1] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
geometric approaches; Grassman manifold; Monte Carlo sampling; subspace estimation;
D O I
10.1109/78.839985
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a geometric approach to estimating subspaces as elements of complex Grassmann-manifold, with: each subspace represented by its unique, complex projection matrix, Variation between the subspaces is modeled by rotating their-projection matrices via the action of unitary matrices [elements of the unitary group U(n)], Subspace estimation or tracking then corresponds to inferences on U(n), Taking a Bayesian approach, a posterior density is derived on U(n), and certain expectations under this posterior are empirically generated; For the choice of the Hilbert-Schmidt norm on U(n), to define estimation errors, an optimal MMSE estimator is derived. It is shown that this estimator achieves a lower bound on the expected squared errors associated with all possible estimators. The estimator and the bound are computed using (Metropolis-adjusted) Langevin's-diffusion algorithm for sampling from the posterior. For use in subspace tracking, a prior model on subspace rotation, that utilizes Newtonian dynamics, is suggested.
引用
收藏
页码:1390 / 1400
页数:11
相关论文
共 33 条
[1]   On subspace methods for blind identification of single-input multiple-output FIR systems [J].
AbedMeraim, K ;
Cardoso, JF ;
Gorokhov, AY ;
Loubaton, P ;
Moulines, E .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (01) :42-55
[2]   A MULTIFLOW APPROXIMATION TO DIFFUSIONS [J].
AMIT, Y .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1991, 37 (02) :213-237
[3]  
[Anonymous], 1992, Stochastic Stability of Markov chains
[4]  
BESAG J, 1993, J ROY STAT SOC B MET, V55, P25
[5]   GEOMETRY AND MULTIPLE DIRECTION ESTIMATION [J].
BUCY, RS .
INFORMATION SCIENCES, 1991, 57-8 :145-158
[6]  
COMON P, 1990, P IEEE AUG, V78
[7]  
Delmas JP, 1998, IEEE T SIGNAL PROCES, V46, P3045, DOI 10.1109/78.726817
[8]   The geometry of algorithms with orthogonality constraints [J].
Edelman, A ;
Arias, TA ;
Smith, ST .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 20 (02) :303-353
[9]  
Friedland B., 1986, CONTROL SYSTEM DESIG
[10]  
FUHRMANN DR, 1996, P 6 STAT SIGN ARR PR