A topological hierarchy for functions on triangulated surfaces

被引:130
作者
Bremer, PT
Edelsbrunner, H
Hamann, B
Pascucci, V
机构
[1] Univ Calif Davis, Dept Comp Sci, Ctr Image Proc & Integrated Computing, Davis, CA 95616 USA
[2] Duke Univ, Dept Comp Sci, Durham, NC 27708 USA
[3] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA
关键词
critical point theory; Morse-Smale complex; terrain data; simplification; multiresolution data structure;
D O I
10.1109/TVCG.2004.3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We combine topological and geometric methods to construct a multiresolution representation for a function over a two-dimensional domain. In a preprocessing stage, we create the Morse-Smale complex of the function and progressively simplify its topology by cancelling pairs of critical points. Based on a simple notion of dependency among these cancellations, we construct a hierarchical data structure supporting traversal and reconstruction operations similarly to traditional geometry-based representations. We use this data structure to extract topologically valid approximations that satisfy error bounds provided at runtime.
引用
收藏
页码:385 / 396
页数:12
相关论文
共 37 条
[1]  
Alexandrov P. S., 1998, COMBINATORIAL TOPOLO
[2]   Topology preserving data simplification with error bounds [J].
Bajaj, CL ;
Schikore, DR .
COMPUTERS & GRAPHICS-UK, 1998, 22 (01) :3-12
[3]  
BALAZS A, 2003, CG20032 U BONN
[4]   CRITICAL POINTS AND CURVATURE FOR EMBEDDED POLYHEDRAL SURFACES [J].
BANCHOFF, TF .
AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (05) :475-&
[5]   MONOTONE PIECEWISE BICUBIC INTERPOLATION [J].
CARLSON, RE ;
FRITSCH, FN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (02) :386-400
[6]  
CAYLEY A, 1859, PHILOS MAG, V18, P264
[7]  
De Leeuw W., 1999, Proceedings Visualization '99 (Cat. No.99CB37067), P349, DOI 10.1109/VISUAL.1999.809907
[8]  
DESBRUN M, 2002, P EUROGRAPHICS, V21
[9]  
ECHEKKI E, 2003, COMBUSTION FLAME
[10]   Hierarchical morse-smale complexes for piecewise linear 2-manifolds [J].
Edelsbrunner, H ;
Harer, J ;
Zomorodian, A .
DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 30 (01) :87-107