An elementary proof of the existence and uniqueness theorem for the Navier-Stokes equations

被引:65
作者
Mattingly, JC [1 ]
Sinai, YG
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
D O I
10.1142/S0219199799000183
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:497 / 516
页数:20
相关论文
共 13 条
[1]  
[Anonymous], SHELL MODEL APPL NUC
[2]  
[Anonymous], 2000, MATH INTRO FLUID MEC
[3]  
CONSTANTIN P, 1988, NAVIERSTOKES EQUATIO
[4]  
Doering C.R., 1995, CAMBRIDGE TEXTS APPL
[5]   EXPONENTIAL DECAY-RATE OF THE POWER SPECTRUM FOR SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
DOERING, CR ;
TITI, ES .
PHYSICS OF FLUIDS, 1995, 7 (06) :1384-1390
[6]   GEVREY CLASS REGULARITY FOR THE SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
FOIAS, C ;
TEMAM, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (02) :359-369
[7]  
Gallavotti G., 1996, IPOTESI INTRO MECCAN
[8]  
Hopf E., 1950, MATH NACHR, V4, P213, DOI DOI 10.1002/MANA.3210040121
[9]  
Kreiss H.-O., 1988, ANAL MATH APPL, P245
[10]  
Ladyzhenskaya O. A., 1969, MATH THEORY VISCOUS