Simplest dissipative chaotic flow

被引:236
作者
Sprott, JC
机构
[1] Department of Physics, University of Wisconsin, Madison
关键词
chaos; jerk; flow; strange attractor; differential equation; fractal;
D O I
10.1016/S0375-9601(97)00088-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Numerical examination of third-order, autonomous ODEs with one dependent variable and quadratic nonlinearities has uncovered what appears to be the algebraically simplest example of a dissipative chaotic flow, <(x)triple over dot + A(x) double over dot - (x)(2) over dot + x = 0. This system exhibits a period-doubling route to chaos for 2.017 < A < 2.082 and is approximately described by a one-dimensional quadratic map. (C) 1997 Published by Elsevier Science B.V.
引用
收藏
页码:271 / 274
页数:4
相关论文
共 14 条
[1]  
[Anonymous], 1974, Differential Equations, Dynamical Systems, and Linear Algebra
[2]  
Benettin G., 1980, MECCANICA, V15, P21, DOI DOI 10.1007/BF02128237
[3]   Question # 38. What is the simplest jerk function that gives chaos? [J].
Gottlieb, HPW .
AMERICAN JOURNAL OF PHYSICS, 1996, 64 (05) :525-525
[4]  
HENON M, 1976, COMMUN MATH PHYS, V50, P60
[5]  
Kaplan J., 1979, Lect. Notes Math., P204
[6]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[7]  
2
[8]  
MAY R, 1976, NATURE, V261, P45
[9]   CHAOS IN BIOLOGICAL-SYSTEMS [J].
OLSEN, LF ;
DEGN, H .
QUARTERLY REVIEWS OF BIOPHYSICS, 1985, 18 (02) :165-225
[10]   EQUATION FOR CONTINUOUS CHAOS [J].
ROSSLER, OE .
PHYSICS LETTERS A, 1976, 57 (05) :397-398