Optimal control of dynamical systems with Preisach hysteresis

被引:20
作者
Belbas, SA
Mayergoyz, ID [1 ]
机构
[1] Univ Maryland, Dept Elect Engn, College Pk, MD 20742 USA
[2] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
关键词
D O I
10.1016/S0020-7462(02)00019-7
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We consider optimization problems for controlled dynamical systems, in discrete time, with hysteretic terms of Preisach type. The hysteresis operators act on both the state and the control. We obtain, with proofs, dynamic programming equations for these complex optimal control problems. We also present a method for the numerical solution of the dynamic programming equations. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1351 / 1361
页数:11
相关论文
共 18 条
[1]  
ANDREEVA IE, 1995, BIOCHEMISTRY-MOSCOW+, V60, P1009
[2]   A NEW APPROACH TO PREISACH DIAGRAMS [J].
ATHERTON, DL ;
SZPUNAR, B ;
SZPUNAR, JA .
IEEE TRANSACTIONS ON MAGNETICS, 1987, 23 (03) :1856-1865
[3]  
BABAGIOLO F, 2000, 581 UIM
[4]  
BABAGIOLO F, 2000, 38 MAX PLANCK I MATH
[5]   Optimal control of dynamic systems with hysteresis [J].
Belbas, SA ;
Mayergoyz, ID .
INTERNATIONAL JOURNAL OF CONTROL, 2000, 73 (01) :22-28
[6]  
BROKATE M, 1990, SOME REMARKS DISCRET
[7]  
BROKATE M, 1987, OPTIMALE STEUERUNG G
[8]  
DAPINO MJ, 1999, MAGNETOELSTIC MODEL
[9]  
DELROSARIO RCH, 1997, LQR CONTROL SHELL VI
[10]   Avalanche of bifurcations and hysteresis in a model of cellular differentiation [J].
Fáth, G ;
Domanski, Z .
PHYSICAL REVIEW E, 1999, 60 (04) :4604-4609