The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae

被引:219
作者
ter Schure, EG
van Riel, NAW
Verrips, CT
机构
[1] Unilever Res Labs Vlaardingen, NL-3133 AT Vlaardingen, Netherlands
[2] Univ Utrecht, Dept Mol Cell Biol, NL-3584 CH Utrecht, Netherlands
关键词
nitrogen metabolism; Saccharomyces cerevisiae; ammonia; catabolite repression; regulation;
D O I
10.1016/S0168-6445(99)00030-3
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Saccharomyces cerevisiae is able to use a wide variety of nitrogen sources for growth. Not all nitrogen sources support growth equally well. In order to select the best out of a large diversity of available nitrogen sources, the yeast has developed molecular mechanisms. These mechanisms consist of a sensing mechanism and a regulatory mechanism which includes induction of needed systems, and repression of systems that are not beneficial. The first step in use of most nitrogen sources is its uptake via more or less specific permeases. Hence the first level of regulation is encountered at this level. The next step is the degradation of the nitrogen source to useful building blocks via the nitrogen metabolic pathways. These pathways can be divided into routes that lead to the degradation of the nitrogen source to ammonia and glutamate, and routes that lead to the synthesis of nitrogen containing compounds in which glutamate and glutamine are used as nitrogen donor. Glutamine is synthesized out of ammonia and glutamate. The expression of the specific degradation routes is also regulated depending on the availability of a particular nitrogen source. Ammonia plays a central role as intermediate between degradative and biosynthetic pathways. It not only functions as a metabolite in metabolic reactions but is also involved in regulation of metabolic pathways at several levels. This review describes the central role of ammonia in nitrogen metabolism This role is illustrated at the level of enzyme activity, translation and transcription. (C) 2000 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:67 / 83
页数:17
相关论文
共 126 条
[1]   GENETIC ASPECTS OF [URE3], A NON-MITOCHONDRIAL, CYTOPLASMICALLY INHERITED MUTATION IN YEAST [J].
AIGLE, M ;
LACROUTE, F .
MOLECULAR & GENERAL GENETICS, 1975, 136 (04) :327-335
[2]   An overview of membrane transport proteins in Saccharomyces cerevisiae [J].
Andre, B .
YEAST, 1995, 11 (16) :1575-1611
[3]   2 MUTUALLY EXCLUSIVE REGULATORY SYSTEMS INHIBIT UAS(GATA), A CLUSTER OF 5'-GAT(A/T)A-3' UPSTREAM FROM THE UGA4 GENE OF SACCHAROMYCES-CEREVISIAE [J].
ANDRE, B ;
TALIBI, D ;
BOUDEKOU, SS ;
HEIN, C ;
VISSERS, S ;
COORNAERT, D .
NUCLEIC ACIDS RESEARCH, 1995, 23 (04) :558-564
[4]   GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae [J].
Avendano, A ;
Deluna, A ;
Olivera, H ;
Valenzuela, L ;
Gonzalez, A .
JOURNAL OF BACTERIOLOGY, 1997, 179 (17) :5594-5597
[5]   PROLINE-INDEPENDENT BINDING OF PUT3 TRANSCRIPTIONAL ACTIVATOR PROTEIN DETECTED BY FOOTPRINTING INVIVO [J].
AXELROD, JD ;
MAJORS, J ;
BRANDRISS, MC .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (01) :564-567
[6]   Interaction of the GATA factor Gln3p with the nitrogen regulator Ure2p in Saccharomyces cerevisiae [J].
Blinder, D ;
Coschigano, PW ;
Magasanik, B .
JOURNAL OF BACTERIOLOGY, 1996, 178 (15) :4734-4736
[7]   RECOGNITION OF NITROGEN-RESPONSIVE UPSTREAM ACTIVATION SEQUENCES OF SACCHAROMYCES-CEREVISIAE BY THE PRODUCT OF THE GLN3 GENE [J].
BLINDER, D ;
MAGASANIK, B .
JOURNAL OF BACTERIOLOGY, 1995, 177 (14) :4190-4193
[8]   Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae [J].
Boy-Marcotte, E ;
Perrot, M ;
Bussereau, F ;
Boucherie, H ;
Jacquet, M .
JOURNAL OF BACTERIOLOGY, 1998, 180 (05) :1044-1052
[9]  
BRANDRISS MC, 1987, GENETICS, V117, P429
[10]   GENETICS AND PHYSIOLOGY OF PROLINE UTILIZATION IN SACCHAROMYCES-CEREVISIAE - MUTATION CAUSING CONSTITUTIVE ENZYME EXPRESSION [J].
BRANDRISS, MC ;
MAGASANIK, B .
JOURNAL OF BACTERIOLOGY, 1979, 140 (02) :504-507