Conservation of alternative polyadenylation patterns in mammalian genes

被引:39
作者
Ara, Takeshi
Lopez, Fabrice
Ritchie, William
Benech, Philippe
Gautheret, Daniel
机构
[1] Univ Mediterranee, INSERM ERM 206, F-13288 Marseille 09, France
[2] Univ Paris Sud, CNRS, UMR 8621, Inst Genet & Microbiol, F-91405 Orsay, France
关键词
D O I
10.1186/1471-2164-7-189
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Alternative polyadenylation is a widespread mechanism contributing to transcript diversity in eukaryotes. Over half of mammalian genes are alternatively polyadenylated. Our understanding of poly(A) site evolution is limited by the lack of a reliable identification of conserved, equivalent poly(A) sites among species. We introduce here a working definition of conserved poly(A) sites as sites that are both (i) properly aligned in human and mouse orthologous 3' untranslated regions (UTRs) and (ii) supported by EST or cDNA data in both species. Results: We identified about 4800 such conserved poly(A) sites covering one third of the orthologous gene set studied. Characteristics of conserved poly(A) sites such as processing efficiency and tissue-specificity were analyzed. Conserved sites show a higher processing efficiency but no difference in tissular distribution when compared to non-conserved sites. In general, alternative poly(A) sites are species-specific and involve minor, non-conserved sites that are unlikely to play essential roles. However, there are about 500 genes with conserved tandem poly(A) sites. A significant fraction of these conserved tandems display a conserved arrangement of major/minor sites in their 3' UTR, suggesting that these alternative 3' ends may be under selection. Conclusion: This analysis allows us to identify potential functional alternative poly(A) sites and provides clues on the selective mechanisms at play in the appearance of multiple poly(A) sites and their maintenance in the 3' UTRs of genes.
引用
收藏
页数:11
相关论文
共 22 条
[1]   Patterns of variant polyadenylation signal usage in human genes [J].
Beaudoing, E ;
Freier, S ;
Wyatt, JR ;
Claverie, JM ;
Gautheret, D .
GENOME RESEARCH, 2000, 10 (07) :1001-1010
[2]   Identification of alternate polyadenylation sites and analysis of their tissue distribution using EST data [J].
Beaudoing, E ;
Gautheret, D .
GENOME RESEARCH, 2001, 11 (09) :1520-1526
[3]   An overview of ensembl [J].
Birney, E ;
Andrews, TD ;
Bevan, P ;
Caccamo, M ;
Chen, Y ;
Clarke, L ;
Coates, G ;
Cuff, J ;
Curwen, V ;
Cutts, T ;
Down, T ;
Eyras, E ;
Fernandez-Suarez, XM ;
Gane, P ;
Gibbins, B ;
Gilbert, J ;
Hammond, M ;
Hotz, HR ;
Iyer, V ;
Jekosch, K ;
Kahari, A ;
Kasprzyk, A ;
Keefe, D ;
Keenan, S ;
Lehvaslaiho, H ;
McVicker, G ;
Melsopp, C ;
Meidl, P ;
Mongin, E ;
Pettett, R ;
Potter, S ;
Proctor, G ;
Rae, M ;
Searle, S ;
Slater, G ;
Smedley, D ;
Smith, J ;
Spooner, W ;
Stabenau, A ;
Stalker, J ;
Storey, R ;
Ureta-Vidal, A ;
Woodwark, KC ;
Cameron, G ;
Durbin, R ;
Cox, A ;
Hubbard, T ;
Clamp, M .
GENOME RESEARCH, 2004, 14 (05) :925-928
[4]   PACdb:: PolyA cleavage site and 3′-UTR database [J].
Brockman, JM ;
Singh, P ;
Liu, DL ;
Quinlan, S ;
Salisbury, J ;
Graber, JH .
BIOINFORMATICS, 2005, 21 (18) :3691-3693
[5]   Targeting a complex transcriptome: The construction of the mouse full-length cDNA encyclopedia [J].
Carninci, P ;
Waki, K ;
Shiraki, T ;
Konno, H ;
Shibata, K ;
Itoh, M ;
Aizawa, K ;
Arakawa, T ;
Ishii, Y ;
Sasaki, D ;
Bono, H ;
Kondo, S ;
Sugahara, Y ;
Saito, R ;
Osato, N ;
Fukuda, S ;
Sato, K ;
Watahiki, A ;
Hirozane-Kishikawa, T ;
Nakamura, M ;
Shibata, Y ;
Yasunishi, A ;
Kikuchi, N ;
Yoshiki, A ;
Kusakabe, M ;
Gustincich, S ;
Beisel, K ;
Pavan, W ;
Aidinis, V ;
Nakagawara, A ;
Held, WA ;
Iwata, H ;
Kono, T ;
Nakauchi, H ;
Lyons, P ;
Wells, C ;
Hume, DA ;
Fagiolini, M ;
Hensch, TK ;
Brinkmeier, M ;
Camper, S ;
Hirota, J ;
Mombaerts, P ;
Muramatsu, M ;
Okazaki, Y ;
Kawai, J ;
Hayashizaki, Y .
GENOME RESEARCH, 2003, 13 (6B) :1273-1289
[6]   CLEAVAGE SITE DETERMINANTS IN THE MAMMALIAN POLYADENYLATION SIGNAL [J].
CHEN, F ;
MACDONALD, CC ;
WILUSZ, J .
NUCLEIC ACIDS RESEARCH, 1995, 23 (14) :2614-2620
[7]   Alternative poly(A) site selection in complex transcription units: Means to an end? [J].
EdwaldsGilbert, G ;
Veraldi, KL ;
Milcarek, C .
NUCLEIC ACIDS RESEARCH, 1997, 25 (13) :2547-2561
[8]   Bioinformatic identification of candidate cis-regulatory elements involved in human mRNA polyadenylation [J].
Hu, J ;
Lutz, CS ;
Wilusz, J ;
Tian, B .
RNA, 2005, 11 (10) :1485-1493
[9]   Integrative annotation of 21,037 human genes validated by full-length cDNA clones [J].
Imanishi, T ;
Itoh, T ;
Suzuki, Y ;
O'Donovan, C ;
Fukuchi, S ;
Koyanagi, KO ;
Barrero, RA ;
Tamura, T ;
Yamaguchi-Kabata, Y ;
Tanino, M ;
Yura, K ;
Miyazaki, S ;
Ikeo, K ;
Homma, K ;
Kasprzyk, A ;
Nishikawa, T ;
Hirakawa, M ;
Thierry-Mieg, J ;
Thierry-Mieg, D ;
Ashurst, J ;
Jia, LB ;
Nakao, M ;
Thomas, MA ;
Mulder, N ;
Karavidopoulou, Y ;
Jin, LH ;
Kim, S ;
Yasuda, T ;
Lenhard, B ;
Eveno, E ;
Suzuki, Y ;
Yamasaki, C ;
Takeda, J ;
Gough, C ;
Hilton, P ;
Fujii, Y ;
Sakai, H ;
Tanaka, S ;
Amid, C ;
Bellgard, M ;
Bonaldo, MD ;
Bono, H ;
Bromberg, SK ;
Brookes, AJ ;
Bruford, E ;
Carninci, P ;
Chelala, C ;
Couillault, C ;
de Souza, SJ ;
Debily, MA .
PLOS BIOLOGY, 2004, 2 (06) :856-875
[10]   Evolutionarily conserved and diverged alternative splicing events show different expression and functional profiles [J].
Kan, Z ;
Garrett-Engele, PW ;
Johnson, JM ;
Castle, JC .
NUCLEIC ACIDS RESEARCH, 2005, 33 (17) :5659-5666