Surface determinants of Leishmania parasites and their role in infectivity in the mammalian host

被引:121
作者
Naderer, T [1 ]
Vince, JE [1 ]
McConville, MJ [1 ]
机构
[1] Univ Melbourne, Dept Biochem & Mol Biol, Parkville, Vic 3010, Australia
关键词
Leishmania; lipophosphoglycan; surface coat; GPI; macrophage; virulence factors; transporters;
D O I
10.2174/1566524043360069
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Leishmania are intracellular protozoan parasites that reside primarily in host mononuclear phagocytes. Infection of host macrophages is initiated by infective promastigote stages and perpetuated by an obligate intracellular amastigote stage. Studies undertaken over the last decade have shown that the composition of the complex surface glycocalyx of these stages (comprising lipophosphoglycan, GPI-anchored glycoproteins, proteophosphoglycans and free GPI glycolipids) changes dramatically as promastigotes differentiate into amastigotes. Marked stage-specific changes also occur in the expression of other plasma membrane components, including type-1, polytopic and peripheral membrane proteins, reflecting the distinct microbicidal responses and nutritional environments encountered by these stages. More recently, a number of Leishmania mutants lacking single or multiple surface components have been generated. While some of these mutants are less virulent than wild type parasites, many of these mutants exhibit only mild or no loss of virulence. These studies suggest that, 1) the major surface glycocalyx components of the promastigote stage (i.e. LPG, GPI-anchored proteins) only have a transient or minor role in macrophage invasion, 2) that there is considerable functional redundancy in the surface glycocalyx and/or loss of some components can be compensated for by the acquisition of equivalent host glycolipids, 3) the expression of specific nutrient transporters is essential for life in the macrophage and 4) the role(s) of some surface components differ markedly in different Leishmania species. These mutants will be useful for identifying other surface or intracellular components that are required for virulence in macrophages.
引用
收藏
页码:649 / 665
页数:17
相关论文
共 221 条
[1]  
ACE TA, 1999, MOL BIOCHEM PARASIT, V102, P191
[2]  
Alexander J, 1999, J CELL SCI, V112, P2993
[3]   THE BETA-ASPARTYL PHOSPHATE INTERMEDIATE IN A LEISHMANIA-DONOVANI PROMASTIGOTE PLASMA-MEMBRANE P-TYPE ATPASE [J].
ANDERSON, SA ;
JIANG, SP ;
MUKKADA, AJ .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1994, 1195 (01) :81-88
[4]   BIOCHEMICAL AND IMMUNOCHEMICAL CHARACTERIZATION OF A P-TYPE ATPASE FROM LEISHMANIA-DONOVANI PROMASTIGOTE PLASMA-MEMBRANE [J].
ANDERSON, SA ;
MUKKADA, AJ .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1994, 1195 (01) :71-80
[5]  
Antoine JC, 1999, J CELL SCI, V112, P2559
[6]   Rapid transport of phospholipids across the plasma membrane of Leishmania infantum [J].
Araújo-Santos, JM ;
Gamarro, F ;
Castanys, S ;
Herrmann, A ;
Pomorski, T .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2003, 306 (01) :250-255
[7]   EXPRESSION OF LIPOPHOSPHOGLYCAN, HIGH-MOLECULAR-WEIGHT PHOSPHOGLYCAN AND GLYCOPROTEIN-63 IN PROMASTIGOTES AND AMASTIGOTES OF LEISHMANIA-MEXICANA [J].
BAHR, V ;
STIERHOF, YD ;
ILG, T ;
DEMAR, M ;
QUINTEN, M ;
OVERATH, P .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 1993, 58 (01) :107-121
[8]   Apoptotic mimicry by an obligate intracellular parasite downregulates macrophage microbicidal activity [J].
Balanco, JMD ;
Moreira, MEC ;
Bonomo, A ;
Bozza, PT ;
Amarante-Mendes, G ;
Pirmez, C ;
Barcinski, MA .
CURRENT BIOLOGY, 2001, 11 (23) :1870-1873
[9]   Trypanosome glucose transporters [J].
Barrett, MP ;
Tetaud, E ;
Seyfang, A ;
Bringaud, F ;
Baltz, T .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 1998, 91 (01) :195-205
[10]   Putrescine and spermidine transport in Leishmania [J].
Basselin, M ;
Coombs, GH ;
Barrett, MP .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 2000, 109 (01) :37-46