A note on wetting transition for gradient fields

被引:21
作者
Caputo, P [1 ]
Velenik, Y [1 ]
机构
[1] TU Berlin, Fachbereich Math, D-10623 Berlin, Germany
关键词
gradient models; entropic repulsion; pinning; wetting transition;
D O I
10.1016/S0304-4149(99)00113-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove existence of a wetting transition for two classes of gradient fields which include: (1) The Continuous SOS model in any dimension and (2) The massless Gaussian model in dimension 2. Combined with a recent result proving the absence of such a transition for Gaussian models above 2 dimensions (Bolthausen et al., 2000. J. Math. Phys. to appear), this shows in particular that absolute-value and quadratic interactions can give rise to completely different behavior. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:107 / 113
页数:7
相关论文
共 12 条
[1]   ENTROPIC REPULSION OF THE LATTICE FREE-FIELD [J].
BOLTHAUSEN, E ;
DEUSCHEL, JD ;
ZEITOUNI, O .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 170 (02) :417-443
[2]  
BOLTHAUSEN E, 2000, IN PRESS J MATH PHYS
[3]  
BOLTHAUSEN E, 1999, LECT NOTES STFLOUR
[4]  
BOLTHAUSEN E, 2000, IN PRESS IMS LECT NO
[5]  
BOLTHAUSEN E, 1997, COMMUN MATH PHYS, V187, P567
[6]   LOCALIZATION-DELOCALIZATION TRANSITION IN A SOLID-ON-SOLID MODEL WITH A PINNING POTENTIAL [J].
BURKHARDT, TW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (03) :L63-L68
[7]   THE PINNING OF AN INTERFACE BY A PLANAR DEFECT [J].
CHALKER, JT .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (09) :L481-L485
[8]  
DEUSCHEL JD, 2000, IN PRESS PROBAB THEO
[9]  
DEUSCHEL JD, 1999, ENTROPIC REPULSION M
[10]   PINNING OF AN INTERFACE BY A WEAK POTENTIAL [J].
DUNLOP, F ;
MAGNEN, J ;
RIVASSEAU, V ;
ROCHE, P .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (1-2) :71-98