Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements

被引:475
作者
Back, Seoin [1 ]
Lim, Juhyung [1 ]
Kim, Na-Young [2 ]
Kim, Yong-Hyun [2 ]
Jung, Yousung [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Grad Sch EEWS, 291 Daehakro, Daejeon 34141, South Korea
[2] Korea Adv Inst Sci & Technol, Grad Sch Nanosci & Technol, 291 Daehakro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; METAL; AU; HYDROCARBONS; PERFORMANCE; CONVERSION; IR-1/FEOX; OXIDATION; GRAPHENE;
D O I
10.1039/c6sc03911a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A single-atom catalyst (SAC) has an electronic structure that is very different from its bulk counterparts, and has shown an unexpectedly high specific activity with a significant reduction in noble metal usage for CO oxidation, fuel cell and hydrogen evolution applications, although physical origins of such performance enhancements are still poorly understood. Herein, by means of density functional theory (DFT) calculations, we for the first time investigate the great potential of single atom catalysts for CO2 electroreduction applications. In particular, we study a single transition metal atom anchored on defective graphene with single or double vacancies, denoted M@sv-Gr or M@dv-Gr, where M = Ag, Au, Co, Cu, Fe, Ir, Ni, Os, Pd, Pt, Rh or Ru, as a CO2 reduction catalyst. Many SACs are indeed shown to be highly selective for the CO2 reduction reaction over a competitive H-2 evolution reaction due to favorable adsorption of carboxyl (*COOH) or formate (*OCHO) over hydrogen (*H) on the catalysts. On the basis of free energy profiles, we identified several promising candidate materials for different products; Ni@dv-Gr (limiting potential U-L = -0.41 V) and Pt@dv-Gr (-0.27 V) for CH3OH production, and Os@dvGr (-0.52 V) and Ru@dv-Gr (-0.52 V) for CH4 production. In particular, the Pt@dv-Gr catalyst shows remarkable reduction in the limiting potential for CH3OH production compared to any existing catalysts, synthesized or predicted. To understand the origin of the activity enhancement of SACs, we find that the lack of an atomic ensemble for adsorbate binding and the unique electronic structure of the single atom catalysts as well as orbital interaction play an important role, contributing to binding energies of SACs that deviate considerably from the conventional scaling relation of bulk transition metals.
引用
收藏
页码:1090 / 1096
页数:7
相关论文
共 42 条
  • [1] Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces
    Abild-Pedersen, F.
    Greeley, J.
    Studt, F.
    Rossmeisl, J.
    Munter, T. R.
    Moses, P. G.
    Skulason, E.
    Bligaard, T.
    Norskov, J. K.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (01)
  • [2] Active Sites of Au and Ag Nanoparticle Catalysts for CO2 Electroreduction to CO
    Back, Seoin
    Yeom, Min Sun
    Jung, Yousung
    [J]. ACS CATALYSIS, 2015, 5 (09): : 5089 - 5096
  • [3] Selective Heterogeneous CO2 Electroreduction to Methanol
    Back, Seoin
    Kim, Heejin
    Jung, Yousung
    [J]. ACS CATALYSIS, 2015, 5 (02): : 965 - 971
  • [4] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [5] Acid and basic catalysis
    Bronsted, JN
    [J]. CHEMICAL REVIEWS, 1928, 5 (03) : 231 - 338
  • [6] Molybdenum Sulfides and Selenides as Possible Electrocatalysts for CO2 Reduction
    Chan, Karen
    Tsai, Charlie
    Hansen, Heine A.
    Norskov, Jens K.
    [J]. CHEMCATCHEM, 2014, 6 (07) : 1899 - 1905
  • [7] Inertia and driving force of chemical reactions.
    Evans, MG
    Polanyi, M
    [J]. TRANSACTIONS OF THE FARADAY SOCIETY, 1938, 34 (01): : 0011 - 0023
  • [8] Electrochemical reduction of CO2 to hydrocarbons to store renewable electrical energy and upgrade biogas
    Gattrell, M.
    Gupta, N.
    Co, A.
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2007, 48 (04) : 1255 - 1265
  • [9] A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper
    Gattrell, M.
    Gupta, N.
    Co, A.
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2006, 594 (01) : 1 - 19
  • [10] A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
    Grimme, Stefan
    Antony, Jens
    Ehrlich, Stephan
    Krieg, Helge
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)