On gyroid interfaces

被引:62
作者
GrosseBrauckmann, K
机构
[1] Mathematisches Institut, Universität Bonn, 53115 Bonn
关键词
triply periodic interfaces; constant mean curvature; gyroid;
D O I
10.1006/jcis.1996.4720
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We use Brakke's Surface Evolver to construct a family of intersection-free triply periodic surfaces with constant mean curvature. The gyroid family models various physical interfaces. We calculate area and volume along the family, compare it with the Schwarz P and D families, and discuss the general problem of a comparison of triply periodic morphologies. (C) 1997 Academic Press.
引用
收藏
页码:418 / 428
页数:11
相关论文
共 20 条
[1]  
Anderson DM., 1990, ADV CHEM PHYS, V77, P337
[2]  
[Anonymous], THESIS U MINNESOTA
[3]  
BRAKKE K, 1994, GCG71 U MINN
[4]  
Brakke K.A., 1992, Exp. Math, P141, DOI DOI 10.1080/10586458.1992.10504253
[5]  
DUBOISVIOLETTE E, J PHYS S, V51
[6]  
FORSTER S, 1994, MACROMOLECULES, V27, P6922
[7]  
GROSSEBRAUCKMAN.K, 1996, EXP MATH, V4, P499
[8]   The gyroid is embedded and has constant mean curvature companions [J].
GrosseBrauckmann, K ;
Wohlgemuth, M .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1996, 4 (06) :499-523
[9]   NEW SURFACES OF CONSTANT MEAN-CURVATURE [J].
GROSSEBRAUCKMANN, K .
MATHEMATISCHE ZEITSCHRIFT, 1993, 214 (04) :527-565
[10]   THE GYROID - A NEW EQUILIBRIUM MORPHOLOGY IN WEAKLY SEGREGATED DIBLOCK COPOLYMERS [J].
HAJDUK, DA ;
HARPER, PE ;
GRUNER, SM ;
HONEKER, CC ;
KIM, G ;
THOMAS, EL ;
FETTERS, LJ .
MACROMOLECULES, 1994, 27 (15) :4063-4075