Noncommutative gravity in two dimensions

被引:51
作者
Cacciatori, S
Chamseddine, AH
Klemm, D
Martucci, L
Sabra, WA
Zanon, D
机构
[1] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Amer Univ Beirut, CAMS, Beirut, Lebanon
[3] Amer Univ Beirut, Dept Phys, Beirut, Lebanon
[4] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy
[5] Ist Nazl Fis Nucl, Sezione Milano, I-20133 Milan, Italy
关键词
D O I
10.1088/0264-9381/19/15/310
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We deform a two-dimensional topological gravity making use of its gauge theory formulation. The obtained noncommutative gravity model is shown to be invariant under a class of transformations that reduce to standard diffeomorphisms once the noncommutativity parameter is set to zero. Some solutions of the deformed model, such as fuzzy AdS(2), are obtained. Furthermore, the transformation properties of the model under the Seiberg-Witten map are studied.
引用
收藏
页码:4029 / 4042
页数:14
相关论文
共 34 条
[1]   A CHERN-SIMONS ACTION FOR 3-DIMENSIONAL ANTI-DESITTER SUPERGRAVITY THEORIES [J].
ACHUCARRO, A ;
TOWNSEND, PK .
PHYSICS LETTERS B, 1986, 180 (1-2) :89-92
[2]   Chern-Simons formulation of noncommutative gravity in three dimensions -: art. no. 084012 [J].
Bañados, M ;
Chandía, O ;
Grandi, N ;
Schaposnik, FA ;
Silva, GA .
PHYSICAL REVIEW D, 2001, 64 (08) :840121-840128
[3]  
BICHL AA, 2001, HEPTH0108045
[4]  
CACCIATORI S, HEPTH0201103
[5]   TOPOLOGICAL GRAVITY IN 1+1 DIMENSIONS [J].
CHAMSEDDINE, AH ;
WYLER, D .
NUCLEAR PHYSICS B, 1990, 340 (2-3) :595-616
[6]  
Chamseddine AH, 2001, INT J MOD PHYS A, V16, P759, DOI 10.1142/S0217751X01003883
[7]   Deforming Einstein's gravity [J].
Chamseddine, AH .
PHYSICS LETTERS B, 2001, 504 (1-2) :33-37
[8]   Complexified gravity in noncommutative spaces [J].
Chamseddine, AH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 218 (02) :283-292
[9]  
CHAMSEDDINE AH, 2002, HEPTH0202137
[10]  
Christensen, 1984, QUANTUM THEORY GRAVI