Evidence of genome-wide G4 DNA-mediated gene expression in human cancer cells

被引:114
作者
Verma, Anjali [1 ]
Yadav, Vinod Kumar [2 ]
Basundra, Richa [1 ]
Kumar, Akinchan [1 ]
Chowdhury, Shantanu [1 ,2 ]
机构
[1] CSIR, Inst Genom & Integrat Biol, Prote & Struct Biol Unit, Delhi 110007, India
[2] CSIR, Inst Genom & Integrat Biol, GN Ramachandran Knowledge Ctr Genome Informat, Delhi 110007, India
关键词
G-QUADRUPLEX DNA; NUCLEASE HYPERSENSITIVE ELEMENT; C-MYC PROMOTER; CATIONIC PORPHYRINS; REGULATORY MOTIFS; HUMAN TELOMERASE; BINDING; SEQUENCE; REGION; TMPYP4;
D O I
10.1093/nar/gkn1076
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Guanine-rich DNA of a particular sequence adopts four-stranded structural forms known as G-quadruplex or G4 DNA. Though in vitro formation of G4 DNA is known for several years, in vivo presence of G4 DNA was only recently noted in eukaryote telomeres. Recent bioinformatics analyses showing prevalence of G4 DNA within promoters of human and related species seems to implicate G4 DNA in a genome-wide cis-regulatory role. Herein we demonstrate that G4 DNA may present regulatory sites on a genome-wide scale by showing widespread effect on gene expression in response to the established intracellular G4 DNA-binding ligands. This is particularly relevant to genes that harbor conserved potential G4 DNA (PG4 DNA) forming sequence across human, mouse and rat promoters of orthologous genes. Genes with conserved PG4 DNA in promoters show co-regulated expression in 79 human and 61 mouse normal tissues (z-score > 3.5; P < 0.0001). Conservation of G4 DNA across related species also emphasizes the biological importance of G4 DNA and its role in transcriptional regulation of genes; shedding light on a relatively novel mechanism of regulation of gene expression in eukaryotes.
引用
收藏
页码:4194 / 4204
页数:11
相关论文
共 64 条
[1]   Interaction of human DNA topoisomerase I with G-quartet structures [J].
Arimondo, PB ;
Riou, JF ;
Mergny, JL ;
Tazi, J ;
Sun, JS ;
Garestier, T ;
Hélène, C .
NUCLEIC ACIDS RESEARCH, 2000, 28 (24) :4832-4838
[2]   HAIRPIN AND PARALLEL QUARTET STRUCTURES FOR TELOMERIC SEQUENCES [J].
BALAGURUMOORTHY, P ;
BRAHMACHARI, SK ;
MOHANTY, D ;
BANSAL, M ;
SASISEKHARAN, V .
NUCLEIC ACIDS RESEARCH, 1992, 20 (15) :4061-4067
[3]  
BALAGURUMOORTHY P, 1994, J BIOL CHEM, V269, P21858
[4]   Quartets in G-major - The first international meeting on quadruplex DNA [J].
Bates, Paula ;
Mergny, Jean-Louis ;
Yang, Danzhou .
EMBO REPORTS, 2007, 8 (11) :1003-1010
[5]   Telomere maintenance mechanisms as a target for drug development [J].
Bearss, DJ ;
Hurley, LH ;
Von Hoff, DD .
ONCOGENE, 2000, 19 (56) :6632-6641
[6]   SELECTION OF SINGLE-STRANDED-DNA MOLECULES THAT BIND AND INHIBIT HUMAN THROMBIN [J].
BOCK, LC ;
GRIFFIN, LC ;
LATHAM, JA ;
VERMAAS, EH ;
TOOLE, JJ .
NATURE, 1992, 355 (6360) :564-566
[7]   Quadruplex DNA: sequence, topology and structure [J].
Burge, Sarah ;
Parkinson, Gary N. ;
Hazel, Pascale ;
Todd, Alan K. ;
Neidle, Stephen .
NUCLEIC ACIDS RESEARCH, 2006, 34 (19) :5402-5415
[8]   Structure-function correlations of the insulin-linked polymorphic region [J].
Catasti, P ;
Chen, X ;
Moyzis, RK ;
Bradbury, EM ;
Gupta, G .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 264 (03) :534-545
[9]   Detection of quadruplex DNA structures in human telomeres by a fluorescent carbazole derivative [J].
Chang, CC ;
Kuo, IC ;
Ling, IF ;
Chen, CT ;
Chen, HC ;
Lou, PJ ;
Lin, JJ ;
Chang, TC .
ANALYTICAL CHEMISTRY, 2004, 76 (15) :4490-4494
[10]   G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription [J].
Cogoi, Susanna ;
Xodo, Luigi E. .
NUCLEIC ACIDS RESEARCH, 2006, 34 (09) :2536-2549