On the variability of case-deletion importance sampling weights in the Bayesian linear model

被引:28
作者
Peruggia, M
机构
关键词
central limit theorem; estimation; infinite variance; influence; leverage; Markov chain Monte Carlo sampling;
D O I
10.2307/2291464
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
I consider a standard specification of the Bayesian linear model and derive necessary and sufficient conditions for the variance of the case-deletion importance sampling weights to be finite. The conditions have an intuitive interpretation in terms of familiar frequentist measures of leverage and influence and are easy to verify. I present two real data examples in which the necessary conditions fail to hold for some observations and the corresponding importance sampling estimates are highly unreliable.
引用
收藏
页码:199 / 207
页数:9
相关论文
共 25 条
[1]  
[Anonymous], 1982, Residuals and influence in regression
[2]  
[Anonymous], 1994, BAYESIAN POISSON REG
[3]  
Atkinson A. C., 1985, PLOTS TRANSFORMATION
[4]   FAST VERY ROBUST METHODS FOR THE DETECTION OF MULTIPLE OUTLIERS [J].
ATKINSON, AC .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (428) :1329-1339
[5]  
BRADLOW ET, 1995, CASE INFLUENCE ANAL
[6]  
BROWNLEE KA, 1965, STATISTICAL THEORY M
[7]  
CHALONER K, 1988, BIOMETRIKA, V75, P651
[8]  
DeGroot MH., 2005, Optimal Statistical Decisions
[9]  
DOSS H, 1994, STAT DECISION THEORY, V5, P171
[10]  
Gelfand A., 1992, Bayesian Stat, V4, P147