Dissociative phosphoryl transfer in PEP mutase catalysis: Structure of the enzyme/sulfopyruvate complex and kinetic properties of mutants

被引:29
作者
Liu, SJ
Lu, ZB
Jia, Y
Dunaway-Mariano, D
Herzberg, O
机构
[1] Univ Maryland, Maryland Biotechnol Inst, Ctr Adv Res Biotechnol, Rockville, MD 20850 USA
[2] Univ New Mexico, Dept Chem, Albuquerque, NM 87131 USA
关键词
D O I
10.1021/bi026024v
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The crystal structure of PEP mutase from Mytilus edulis in complex with a substrate-analogue inhibitor, sulfopyruvate S-pyr (K-i = 22 muM), has been determined at 2.25 Angstrom resolution. Mg(II)-S-pyr binds in the alpha/beta barrel's central channel, at the C-termini of the beta-strands. The binding mode of S-pyr's pyruvyl moiety resembles the binding mode of oxalate seen earlier. The location of the sulfo group of S-pyr is postulated to mimic the phosphonyl group of the product phosphonopyruvate (P-pyr). This sulfo group interacts with the guanidinium group of Arg159, but it is not aligned for nucleopilic attack by neighboring basic amino side chains. Kinetic analysis of site directed mutants, probing the key active site residues Asp58, Arg159, Asn122, and His190 correlate well with the structural information. The results presented here rule out a phosphoryl transfer mechanism involving a double displacement, and suggest instead that PEP mutase catalysis proceeds via a dissociative mechanism in which the pyruvyl C(3) adds to the same face of the phosphorus from which the C(2)0 departs. We propose that Arg159 and His 190 serve to hold the phosphoryl/metaphosphate/phosphonyl group stationary along the reaction pathway, while the pyruvyl C(1)-C(2) bond rotates upon formation of the metaphosphate. In agreement with published data, the phosphoryl group transfer occurs on the Si-face of PEP with retention of configuration at phosphorus.
引用
收藏
页码:10270 / 10276
页数:7
相关论文
共 43 条
[1]   REACTION INTERMEDIATE ANALOGS FOR ENOLASE [J].
ANDERSON, VE ;
WEISS, PM ;
CLELAND, WW .
BIOCHEMISTRY, 1984, 23 (12) :2779-2786
[2]   CATALYSIS AND THERMODYNAMICS OF THE PHOSPHOENOLPYRUVATE PHOSPHONOPYRUVATE REARRANGEMENT - ENTRY INTO THE PHOSPHONATE CLASS OF NATURALLY-OCCURRING ORGANO-PHOSPHORUS COMPOUNDS [J].
BOWMAN, E ;
MCQUENEY, M ;
BARRY, RJ ;
DUNAWAYMARIANO, D .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1988, 110 (16) :5575-5576
[3]   PURIFICATION AND CHARACTERIZATION OF THE TETRAHYMENA-PYRIFORMIS P-C BOND FORMING ENZYME PHOSPHOENOLPYRUVATE PHOSPHOMUTASE [J].
BOWMAN, ED ;
MCQUENEY, MS ;
SCHOLTEN, JD ;
DUNAWAYMARIANO, D .
BIOCHEMISTRY, 1990, 29 (30) :7059-7063
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   FREE R-VALUE - A NOVEL STATISTICAL QUANTITY FOR ASSESSING THE ACCURACY OF CRYSTAL-STRUCTURES [J].
BRUNGER, AT .
NATURE, 1992, 355 (6359) :472-475
[6]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[7]  
Cleland W W, 1979, Methods Enzymol, V63, P103
[8]   Mechanisms of phosphoryl and acyl transfer [J].
Cleland, WW ;
Hengge, AC .
FASEB JOURNAL, 1995, 9 (15) :1585-1594
[9]  
CLELAND WW, 1995, METHOD ENZYMOL, V249, P341
[10]   MECHANISMS OF NUCLEOPHILIC SUBSTITUTION IN PHOSPHATE ESTERS [J].
COX, JR ;
RAMSAY, OB .
CHEMICAL REVIEWS, 1964, 64 (04) :317-&