A travel guide to the dark matter annihilation signal

被引:166
作者
Evans, NW
Ferrer, F
Sarkar, S
机构
[1] Univ Cambridge, Inst Astron, Cambridge CB3 OHA, England
[2] Univ Oxford, Oxford OX1 3NP, England
来源
PHYSICAL REVIEW D | 2004年 / 69卷 / 12期
关键词
D O I
10.1103/PhysRevD.69.123501
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We provide a "Baedecker" or travel guide to the directions on the sky where the dark matter annihilation signal may be expected. We calculate the flux of high energy gamma rays from annihilation of neutralino dark matter in the center of the Milky Way and the three nearest dwarf spheroidals (Sagittarius, Draco, and Canis Major), using realistic models of the dark matter distribution. Other investigators have used cusped dark halo profiles (such as the Navarro-Frenk-White profile) to claim a significant signal. This ignores the substantial astrophysical evidence that the Milky Way is not dark-matter dominated in the inner regions. We show that the annihilation signal from the Galactic Center falls by two orders of magnitude on substituting a cored dark matter density profile for a cusped one. The present and future generation of high energy gamma-ray detectors, whether atmospheric Cherenkov telescopes or space missions such as GLAST, lack the sensitivity to detect any of the monochromatic gamma-ray annihilation lines. The continuum gamma-ray signal above 1 GeV and above 50 GeV may, however, be detectable either from the dwarf spheroidals or from the Milky Way itself. If the density profiles of the dwarf spheroidals are cusped, then the best prospects are for detecting Sagittarius and Canis Major. However, if the dwarf spheroidals have milder, cored profiles, then the annihilation signal is not detectable. For GLAST, an attractive strategy is to exploit the wide field of view and observe the Milky Way at medium latitudes, as suggested by Stoehr This is reasonably robust against changes in the density profile.
引用
收藏
页数:10
相关论文
共 49 条
[1]   The potential of the ground based arrays of imaging atmospheric Cherenkov telescopes .2. Gamma ray flux sensitivities [J].
Aharonian, FA ;
Hofmann, W ;
Konopelko, AK ;
Volk, HJ .
ASTROPARTICLE PHYSICS, 1997, 6 (3-4) :369-377
[2]   SOFTSUSY: A program for calculating supersymmetric spectra [J].
Allanach, BC .
COMPUTER PHYSICS COMMUNICATIONS, 2002, 143 (03) :305-331
[3]   Detection of neutralino annihilation photons from external galaxies [J].
Baltz, EA ;
Briot, C ;
Salati, P ;
Taillet, R ;
Silk, J .
PHYSICAL REVIEW D, 2000, 61 (02)
[4]   Clumpy neutralino dark matter -: art. no. 043506. [J].
Bergström, L ;
Edsjö, J ;
Gondolo, P ;
Ullio, P .
PHYSICAL REVIEW D, 1999, 59 (04)
[5]   Observability of γ rays from dark matter neutralino annihilations in the Milky Way halo [J].
Bergstrom, L ;
Ullio, P ;
Buckley, JH .
ASTROPARTICLE PHYSICS, 1998, 9 (02) :137-162
[6]   The dark matter problem in disc galaxies [J].
Binney, J ;
Gerhard, O ;
Silk, J .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2001, 321 (03) :471-474
[7]  
Binney J., 2008, GALACTIC DYNAMICS
[8]   Cuspy dark matter haloes and the Galaxy [J].
Binney, JJ ;
Evans, NW .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2001, 327 (02) :L27-L31
[9]   Accurate parameters of the mass distribution in spiral galaxies.: I.: Fabry-Perot observations of NGC 5585 [J].
Blais-Ouellette, S ;
Carignan, C ;
Amram, P ;
Côté, S .
ASTRONOMICAL JOURNAL, 1999, 118 (05) :2123-2131
[10]   An alternative to the cosmological "concordance model" [J].
Blanchard, A ;
Douspis, M ;
Rowan-Robinson, M ;
Sarkar, S .
ASTRONOMY & ASTROPHYSICS, 2003, 412 (01) :35-44