A microcarrier-based cultivation system for expansion of primary mesenchymal stem cells

被引:130
作者
Frauenschuh, Simone
Reichmann, Elisabeth
Ibold, Yvonne
Goetz, Peter M.
Sittinger, Michael
Ringe, Jochen
机构
[1] Tech Univ Berlin, Inst Biotechnol, Dept Bioengn, D-13353 Berlin, Germany
[2] Univ Med Berlin, Charite, Dept Rheumatol, Tissue Engn Lab, D-10117 Berlin, Germany
关键词
D O I
10.1021/bp060155w
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Microcarrier cultures have been shown to allow extensive cell expansion of tissue engineering relevant cells, such as chondrocytes, while maintaining their phenotype. Our aim was to investigate the in vitro three-dimensional expansion of porcine bone-marrow-derived primary mesenchymal stem cells (MSC) using commercially available Cytodex type 1, type 2, and type 3 microcarriers. In comparison, the Cytodex type 1 microcarriers showed the best results for adherence with over 80% adherent cells after 3 h of incubation, analyzed by the Poisson distribution. Different start cell densities ranging from 1 to 3 x 10(6) cells per 100 cm(2) had only a minor influence on adhesion. The proliferation was examined on Cytodex type 1 microcarriers over a cultivation time of 28 days, which could reveal cell growth and proof of cells recolonizing freshly added microcarriers. Scanning electron microscopy displayed appropriate cell morphology and confirmed cell proliferation. After enzymatic harvest from microcarriers, the osteogenic and chondrogenic differentiation of these cells was induced and shown by relevant histochemistry, such as von Kossa and Alcian blue staining. Totaling the results, we have shown that the three-dimensional expansion of MSC on microcarriers represents a beneficial alternative to the conventional two-dimensional monolayer cultivation method.
引用
收藏
页码:187 / 193
页数:7
相关论文
共 46 条
[1]   Adult human bone marrow-derived mesenchymal progenitor cells are capable of adhesion-independent survival and expansion [J].
Baksh, D ;
Davies, JE ;
Zandstra, PW .
EXPERIMENTAL HEMATOLOGY, 2003, 31 (08) :723-732
[2]   Mesenchymal stem cells: clinical applications and biological characterization [J].
Barry, FP ;
Murphy, JM .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2004, 36 (04) :568-584
[3]  
Bonassar LJ, 1998, J CELL BIOCHEM, P297, DOI 10.1002/(SICI)1097-4644(1998)72:30/31+<297::AID-JCB36>3.0.CO
[4]  
2-6
[5]  
Bruder SP, 1997, J CELL BIOCHEM, V64, P278, DOI 10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO
[6]  
2-F
[7]  
CAPLAN AI, 1994, CLIN PLAST SURG, V21, P429
[8]  
Cheng LZ, 2000, J CELL PHYSIOL, V184, P58, DOI 10.1002/(SICI)1097-4652(200007)184:1<58::AID-JCP6>3.0.CO
[9]  
2-B
[10]   Biodegradable PLGA microcarriers for injectable delivery of chondrocytes: Effect of surface modification on cell attachment and function [J].
Chun, KW ;
Yoo, HS ;
Yoon, JJ ;
Park, TG .
BIOTECHNOLOGY PROGRESS, 2004, 20 (06) :1797-1801