The blocking of an inhomogeneous Bingham fluid. Applications to landslides

被引:32
作者
Hild, P [1 ]
Ionescu, IR
Lachang-Robert, T
Rosca, I
机构
[1] Univ Savoie, Math Lab, UMR 5127, CNRS, F-73376 Le Bourget Du Lac, France
[2] Univ Franche Comte, Lab Math Besancon, UMR 6623, CNRS, F-25030 Besancon, France
[3] Univ Bucharest, Dept Math, Bucharest 70109, Romania
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2002年 / 36卷 / 06期
关键词
viscoplastic fluid; inhomogeneous Bingham model; landslides; blocking property; nondifferentiable variational inequalities; local qualitative properties;
D O I
10.1051/m2an:2003003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is concerned with the flow of a viscous plastic fluid. We choose a model of Bingham type taking into account inhomogeneous yield limit of the fluid, which is well-adapted in the description of landslides. After setting the general threedimensional problem, the blocking property is introduced. We then focus on necessary and sufficient conditions such that blocking of the fluid occurs. The anti-plane flow in twodimensional and onedimensional cases is considered. A variational formulation in terms of stresses is deduced. More fine properties dealing with local stagnant regions as well as local regions where the fluid behaves like a rigid body are obtained in dimension one.
引用
收藏
页码:1013 / 1026
页数:14
相关论文
共 24 条
[1]  
BINGHAM EC, 2000, FLUIDITY PLASTICITY
[2]  
CAZACU O, 2000, ITALIAN GEOTECHNICAL, V34, P44
[3]   PLASTIC-FLOW THROUGH CONICAL CONVERGING DIES, USING A VISCOPLASTIC CONSTITUTIVE EQUATION [J].
CRISTESCU, N .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1975, 17 (06) :425-433
[4]   OPTIMUM DIE ANGLE IN FAST WIRE DRAWING [J].
CRISTESCU, N .
JOURNAL OF MECHANICAL WORKING TECHNOLOGY, 1980, 3 (3-4) :275-287
[5]  
CRISTESCU N, IN PRESS CAN GEOTECH
[6]  
Cristescu N., 2000, GEOTECHNICAL SPECIAL, V101, P86
[7]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[8]  
Duvaut G., 1972, INEQUATIONS MECANIQU
[9]  
GLOWINSKI R, 1976, METHODES MATH INFORM, V5
[10]  
GLOWINSKI R, 1980, TATA I FUNDAMENTAL R, V65