The sleep slow oscillation as a traveling wave

被引:811
作者
Massimini, M [1 ]
Huber, R [1 ]
Ferrarelli, F [1 ]
Hill, S [1 ]
Tononi, G [1 ]
机构
[1] Univ Wisconsin, Dept Psychiat, Madison, WI 53719 USA
关键词
sleep; slow oscillation; human; EEG; cortex; spontaneous activity;
D O I
10.1523/JNEUROSCI.1318-04.2004
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
During much of sleep, virtually all cortical neurons undergo a slow oscillation (<1 Hz) in membrane potential, cycling from a hyperpolarized state of silence to a depolarized state of intense firing. This slow oscillation is the fundamental cellular phenomenon that organizes other sleep rhythms such as spindles and slow waves. Using high-density electroencephalogram recordings in humans, we show here that each cycle of the slow oscillation is a traveling wave. Each wave originates at a definite site and travels over the scalp at an estimated speed of 1.2-7.0 m/sec. Waves originate more frequently in prefrontal-orbitofrontal regions and propagate in an anteroposterior direction. Their rate of occurrence increases progressively reaching almost once per second as sleep deepens. The pattern of origin and propagation of sleep slow oscillations is reproducible across nights and subjects and provides a blueprint of cortical excitability and connectivity. The orderly propagation of correlated activity along connected pathways may play a role in spike timing-dependent synaptic plasticity during sleep.
引用
收藏
页码:6862 / 6870
页数:9
相关论文
共 45 条
[1]   Synaptic plasticity: taming the beast [J].
Abbott, L. F. ;
Nelson, Sacha B. .
NATURE NEUROSCIENCE, 2000, 3 (11) :1178-1183
[2]   Low-frequency (<1 Hz) oscillations in the human sleep electroencephalogram [J].
Achermann, P ;
Borbely, AA .
NEUROSCIENCE, 1997, 81 (01) :213-222
[3]  
Amzica F, 1998, NEUROSCIENCE, V82, P671
[4]   The K-complex: Its slow (<1-Hz) rhythmicity and relation to delta waves [J].
Amzica, F ;
Steriade, M .
NEUROLOGY, 1997, 49 (04) :952-959
[5]  
AMZICA F, 1995, J NEUROSCI, V15, P4658
[6]   SHORT-RANGE AND LONG-RANGE NEURONAL SYNCHRONIZATION OF THE SLOW (LESS-THAN-1-HZ) CORTICAL OSCILLATION [J].
AMZICA, F ;
STERIADE, M .
JOURNAL OF NEUROPHYSIOLOGY, 1995, 73 (01) :20-38
[7]  
Bazhenov M, 2002, J NEUROSCI, V22, P8691
[8]   Regional cerebral blood flow throughout the sleep-wake cycle - An (H2O)-O-15 PET study [J].
Braun, AR ;
Balkin, TJ ;
Wesensten, NJ ;
Carson, RE ;
Varga, M ;
Baldwin, P ;
Selbie, S ;
Belenky, G ;
Herscovitch, P .
BRAIN, 1997, 120 :1173-1197
[9]   PERIODICITY AND DIRECTIONALITY IN THE PROPAGATION OF EPILEPTIFORM DISCHARGES ACROSS NEOCORTEX [J].
CHERVIN, RD ;
PIERCE, PA ;
CONNORS, BW .
JOURNAL OF NEUROPHYSIOLOGY, 1988, 60 (05) :1695-1713
[10]   Cellular and network mechanisms of slow oscillatory activity (&lt;1 Hz) and wave propagations in a cortical network model [J].
Compte, A ;
Sanchez-Vives, MV ;
McCormick, DA ;
Wang, XJ .
JOURNAL OF NEUROPHYSIOLOGY, 2003, 89 (05) :2707-2725