Non-additivity of attractive potentials in modeling of N2 and Ar adsorption isotherms on graphitized carbon black and porous carbon by means of density functional theory

被引:12
作者
Ustinov, EA [1 ]
Do, DD [1 ]
机构
[1] Univ Queensland, Dept Chem Engn, St Lucia, Qld 4072, Australia
关键词
adsorption; carbon black; density functional theory; distribution; pore size;
D O I
10.1002/ppsc.200400924
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a new approach accounting for the nonadditivity of attractive parts of solid-fluid and fluidfluid potentials to improve the quality of the description of nitrogen and argon adsorption isotherms on graphitized carbon black in the framework of non-local density functional theory. We show that the strong solid-fluid interaction in the first monolayer decreases the fluid-fluid interaction, which prevents the twodimensional phase transition to occur. This results in smoother isotherm, which agrees much better with experimental data. In the region of multi-layer coverage the conventional non-local density functional theory and grand canonical Monte Carlo simulations are known to over-predict the amount adsorbed against experimental isotherms. Accounting for the non-additivity factor decreases the solid-fluid interaction with the increase of intermolecular interactions in the dense adsorbed fluid, preventing the over-prediction of loading in the region of multi-layer adsorption. Such an improvement of the non-local density functional theory allows us to describe experimental nitrogen and argon isotherms on carbon black quite accurately with mean error of 2.5 to 5.8% instead of 17 to 26% in the conventional technique. With this approach, the local isotherms of model pores can be derived, and consequently a more reliab * le pore size distribution can be obtained. We illustrate this by applying our theory against nitrogen and argon isotherms on a number of activated carbons. The fitting between our model and the data is much better than the conventional NLDFT, suggesting the more reliable PSD obtained with our approach.
引用
收藏
页码:161 / 169
页数:9
相关论文
共 50 条
[1]   METHANE ADSORPTION ON MICROPOROUS CARBONS - A COMPARISON OF EXPERIMENT, THEORY, AND SIMULATION [J].
AUKETT, PN ;
QUIRKE, N ;
RIDDIFORD, S ;
TENNISON, SR .
CARBON, 1992, 30 (06) :913-924
[2]   LIQUID ARGON - MONTE CARLO AND MOLECULAR DYNAMICS CALCULATIONS [J].
BARKER, JA ;
FISHER, RA ;
WATTS, RO .
MOLECULAR PHYSICS, 1971, 21 (04) :657-&
[3]   THE DETERMINATION OF PORE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES .1. COMPUTATIONS FROM NITROGEN ISOTHERMS [J].
BARRETT, EP ;
JOYNER, LG ;
HALENDA, PP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1951, 73 (01) :373-380
[4]   STUDIES ON PORE SYSTEMS IN CATALYSTS .13. PORE DISTRIBUTIONS FROM DESORPTION BRANCH OF A NITROGEN SORPTION ISOTHERM IN CASE OF CYLINDRICAL PORES .B. APPLICATIONS [J].
BROEKHOFF, JC ;
DEBOER, JH .
JOURNAL OF CATALYSIS, 1968, 10 (04) :377-+
[6]  
BROEKHOFF JCP, 1968, J CATAL, V9, P391
[7]  
BROEKHOFF JCP, 1968, J CATAL, V9, P368
[8]   Adsorption of gases in multimolecular layers [J].
Brunauer, S ;
Emmett, PH ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 :309-319
[9]   EQUATION OF STATE FOR NONATTRACTING RIGID SPHERES [J].
CARNAHAN, NF ;
STARLING, KE .
JOURNAL OF CHEMICAL PHYSICS, 1969, 51 (02) :635-&
[10]   VAPOR-LIQUID-EQUILIBRIA FOR POLYATOMIC FLUIDS FROM SITE SITE COMPUTER-SIMULATIONS - PURE HYDROCARBONS AND BINARY-MIXTURES CONTAINING METHANE [J].
DEPABLO, JJ ;
BONNIN, M ;
PRAUSNITZ, JM .
FLUID PHASE EQUILIBRIA, 1992, 73 (03) :187-210