Biochemical analysis of the processive mechanism for epimerization of alginate by mannuronan C-5 epimerase AlgE4

被引:70
作者
Campa, C
Holtan, S
Nilsen, N
Bjerkan, TM
Stokke, BT
Skjåk-bræk, G
机构
[1] Norwegian Univ Sci & Technol, Dept Phys, N-7034 Trondheim, Norway
[2] Univ Trieste, Dept Biochem Biophys & Macromol Chem, Trieste, Italy
[3] Norwegian Univ Sci & Technol, Dept Biotechnol, Norwegian Biopolymer Lab, Trondheim, Norway
关键词
alginate epimerization; electrospray ionization MS (ESI-MS); micellar electrokinetic capillary chromatography-UV (MEKC-UV); NMR; processive enzyme; subsite analysis;
D O I
10.1042/BJ20031265
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The enzymes mannuronan C-5 epimerases catalyse the in-chain epimerisation of beta-D-mannuronic acid to alpha-L-guluronic acid in the last step of alginate biosynthesis. The recombinant C-5 epimerase AlgE4, encoded by the soil bacteria Azotobacter vinelandii and expressed in Escherichia coli, exhibits a non-random mode of action when acting on mannuronan and alginates of various monomeric compositions. The observed residue sequence has been suggested previously to be due to either a preferred attack or a processive mode of action. Based on methodologies involving specific degrading enzymes, NMR, electrospray ionisation mass spectrometry and capillary electrophoresis we show here that on average 10 residues are epimerised for each enzyme-substrate encounter. A subsite model for the enzyme is analysed by the same methodology using native and C-13-labelled mannuronan oligomers as substrate for the AlgE4 epimerase. A hexameric oligomer is the minimum size to accommodate activity. For hexa-, hepta- and octameric substrates the third M residue from the nonreducing end is epimerised first.
引用
收藏
页码:155 / 164
页数:10
相关论文
共 31 条
[1]   Construction and analyses of hybrid Azotobacter vinelandii mannuronan C-5 epimerases with new epimerization pattern characteristics [J].
Bjerkan, TM ;
Lillehov, BE ;
Strand, WI ;
Skjåk-Bræk, G ;
Valla, S ;
Ertesvåg, H .
BIOCHEMICAL JOURNAL, 2004, 381 :813-821
[2]   STRUCTURAL STUDIES OF ALGINIC ACID, USING A BACTERIAL POLY-ALPHA-L-GULURONATE LYASE [J].
BOYD, J ;
TURVEY, JR .
CARBOHYDRATE RESEARCH, 1978, 66 (OCT) :187-194
[3]   A structural basis for processivity [J].
Breyer, WA ;
Matthews, BW .
PROTEIN SCIENCE, 2001, 10 (09) :1699-1711
[4]   Determination of average degree of polymerisation and distribution of oligosaccharides in a partially acid-hydrolysed homopolysaccharide:: A comparison of four experimental methods applied to mannuronan [J].
Campa, C ;
Oust, A ;
Skjåk-Bræk, G ;
Paulsen, BS ;
Paoletti, S ;
Christensen, BE ;
Ballance, S .
JOURNAL OF CHROMATOGRAPHY A, 2004, 1026 (1-2) :271-281
[5]   A high field NMR study of the products ensuing from Konjak Glucomannan C(6)-oxidation followed by enzymatic C(5)-epimerization [J].
Crescenzi, V ;
Skjåk-Bræk, G ;
Dentini, M ;
Masci, G ;
Bernalda, MS ;
Risica, D ;
Capitani, D ;
Mannina, L ;
Segre, AL .
BIOMACROMOLECULES, 2002, 3 (06) :1343-1352
[6]   Direct evidence for a predominantly exolytic processive mechanism for depolymerization of heparin-like glycosaminoglycans by heparinase I [J].
Ernst, S ;
Rhomberg, AJ ;
Biemann, K ;
Sasisekharan, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (08) :4182-4187
[7]   A FAMILY OF MODULAR TYPE MANNURONAN C-5-EPIMERASE GENES CONTROLS ALGINATE STRUCTURE IN AZOTOBACTER-VINELANDII [J].
ERTESVAG, H ;
HOIDAL, HK ;
HALS, IK ;
RIAN, A ;
DOSETH, B ;
VALLA, S .
MOLECULAR MICROBIOLOGY, 1995, 16 (04) :719-731
[8]  
Ertesvåg H, 1998, J BACTERIOL, V180, P3779
[9]  
Ertesvåg H, 1999, METH BIOTEC, V10, P71
[10]   The Pseudomonas fluorescens AlgG protein, but not its mannuronan C-5-epimerase activity, is needed for alginate polymer formation [J].
Gimmestad, M ;
Sletta, H ;
Ertesvåg, H ;
Bakkevig, K ;
Jain, S ;
Suh, S ;
Skjåk-Bræk, G ;
Ellingsen, TE ;
Ohman, DE ;
Valla, S .
JOURNAL OF BACTERIOLOGY, 2003, 185 (12) :3515-3523