Flexible kernels for RBF networks

被引:12
作者
Falcao, Andre O.
Langlois, Thibault
Wichert, Andreas
机构
[1] Univ Lisbon, Fac Ciencias, Dept Informat, P-1700016 Lisbon, Portugal
[2] Univ Tecn Lisboa, P-2780990 Porto Salvo, Portugal
关键词
radial basis function networks; classification. kernel functions;
D O I
10.1016/j.neucom.2006.03.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a novel approach for modeling kernels in Radial Basis Function networks. The method provides an extra degree of flexibility to the kernel structure. This flexibility comes through the use of modifier functions applied to the distance computation procedure, essential for all kernel evaluations. Initially the classifier uses an unsupervised method to construct the network topology, where most parameters of the network are defined without any customization from the user. During the second phase only one parameter per kernel is estimated. Experimental evidence on four datasets shows that the algorithm is robust and competitive. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:2356 / 2359
页数:4
相关论文
共 6 条
[1]   Generalized radial basis function networks for classification and novelty detection: self-organization of optimal Bayesian decision [J].
Albrecht, S ;
Busch, J ;
Kloppenburg, M ;
Metze, F ;
Tavan, P .
NEURAL NETWORKS, 2000, 13 (10) :1075-1093
[2]  
Bishop C. M., 1996, Neural networks for pattern recognition
[3]   A comparison of methods for multiclass support vector machines [J].
Hsu, CW ;
Lin, CJ .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (02) :415-425
[4]   An efficient method to construct a radial basis function neural network classifier [J].
Hwang, YS ;
Bang, SY .
NEURAL NETWORKS, 1997, 10 (08) :1495-1503
[5]  
Michie D., 1994, Technometrics, V13, P1
[6]   Sensitivity analysis applied to the construction of radial basis function networks [J].
Shi, D ;
Yeung, DS ;
Gao, J .
NEURAL NETWORKS, 2005, 18 (07) :951-957