Biomagnetic characterization of spatiotemporal parameters of the gastric slow wave

被引:41
作者
Bradshaw, L. A.
Irimia, A.
Sims, J. A.
Gallucci, M. R.
Palmer, R. L.
Richards, W. O.
机构
[1] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Dept Surg, Nashville, TN 37240 USA
[3] Vanderbilt Univ, Dept Phys & Engn, Nashville, TN 37240 USA
[4] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37235 USA
关键词
electrogastrogram; gastric dysrhythmias; magnetoenterogram; magnetogastrogram;
D O I
10.1111/j.1365-2982.2006.00794.x
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Certain gastric disorders affect spatiotemporal parameters of the gastric slow wave. Whereas the electrogastrogram (EGG) evaluates electric potentials to determine primarily temporal parameters, fundamental physical limitations imposed by the volume conduction properties of the abdomen suggest the evaluation of gastric magnetic fields. We used a multichannel superconducting quantum interference device magnetometer to study the magnetogastrogram (MGG) in 20 normal human subjects before and after a test meal. We computed the frequency and amplitude parameters of the gastric slow wave from MGG. We identified normal gastric slow wave activity with a frequency of 2.6 +/- 0.5 cycles per minute (cpm) preprandial and 2.8 +/- 0.3 cpm postprandial. In addition to frequency and amplitude, the use of surface current density mapping applied to the multichannel MGG allowed us to visualize the propagating slow wave and compute its propagation velocity (6.6 +/- 1.0 mm s(-1) preprandial and 7.4 +/- 0.4 mm s(-1) postprandial). Whereas MGG and EGG signals exhibited strong correlation, there was very little correlation between the MGG and manometry. The MGG not only records frequency dynamics of the gastric slow wave, but also characterizes gastric propagation. The MGG primarily reflects the underlying gastric electrical activity, but not its mechanical activity.
引用
收藏
页码:619 / 631
页数:13
相关论文
共 58 条
[1]   Biomagnetic 3-dimensional spatial and temporal characterization of electrical activity of human stomach [J].
Allescher, HD ;
Abraham-Fuchs, K ;
Dunkel, RE ;
Classen, M .
DIGESTIVE DISEASES AND SCIENCES, 1998, 43 (04) :683-693
[2]   ORIGIN AND SPREAD OF SLOW WAVES IN CANINE GASTRIC ANTRAL CIRCULAR MUSCLE [J].
BAUER, AJ ;
PUBLICOVER, NG ;
SANDERS, KM .
AMERICAN JOURNAL OF PHYSIOLOGY, 1985, 249 (06) :G800-G806
[3]   Biomagnetic detection of gastric electrical activity in normal and vagotomized rabbits [J].
Bradshaw, LA ;
Myers, AG ;
Redmond, A ;
Wikswo, JP ;
Richards, WO .
NEUROGASTROENTEROLOGY AND MOTILITY, 2003, 15 (05) :475-482
[4]   A spatio-temporal dipole simulation of gastrointestinal magnetic fields [J].
Bradshaw, LA ;
Myers, A ;
Wikswo, JP ;
Richards, WO .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2003, 50 (07) :836-847
[5]   The human vector magnetogastrogram and magnetoenterogram [J].
Bradshaw, LA ;
Ladipo, JK ;
Staton, DJ ;
Wikswo, JP ;
Richards, WO .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1999, 46 (08) :959-970
[6]   Volume conductor effects on the spatial resolution of magnetic fields and electric potentials from gastrointestinal electrical activity [J].
Bradshaw, LA ;
Richards, WO ;
Wikswo, JP .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2001, 39 (01) :35-43
[7]   Correlation and comparison of magnetic and electric detection of small intestinal electrical activity [J].
Bradshaw, LA ;
Allos, SH ;
Wikswo, JP ;
Richards, WO .
AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 1997, 272 (05) :G1159-G1167
[8]  
BRADSHAW LA, 1995, P 17 ANN IEEE EMBS, V17, P871
[9]   Measurement of gastrointestinal motility in the GI laboratory [J].
Camilleri, M ;
Hasler, WL ;
Parkman, HP ;
Quigley, EMM ;
Soffer, E .
GASTROENTEROLOGY, 1998, 115 (03) :747-762
[10]   OBSERVATION OF THE PROPAGATION DIRECTION OF HUMAN ELECTROGASTRIC ACTIVITY FROM CUTANEOUS RECORDINGS [J].
CHEN, J ;
VANDEWALLE, J ;
SANSEN, W ;
VANCUTSEM, E ;
VANTRAPPEN, G ;
JANSSENS, J .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 1989, 27 (05) :538-542