CHARMM fluctuating charge force field for proteins: II - Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model

被引:369
作者
Patel, S [1 ]
Mackerell, AD [1 ]
Brooks, CL [1 ]
机构
[1] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA
基金
美国国家科学基金会;
关键词
molecular simulations; polarizable protein force field; charge equilibration; molecular dynamics;
D O I
10.1002/jcc.20077
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A fluctuating charge (FQ) force field is applied to molecular dynamics simulations for six small proteins in explicit polarizable solvent represented by the TIP4P-FQ potential. The proteins include 1FSV, 1ENH, 1PGB, 1VII, 1H8K, and 1CRN, representing both helical and beta-sheet secondary structural elements. Constant pressure and temperature (NPT) molecular dynamics simulations are performed on time scales of several nanoseconds, the longest simulations yet reported using explicitly polarizable all-atom empirical potentials (for both solvent and protein) in the condensed phase. In terms of structure, the FQ force field allows deviations from native structure up to 2.5 Angstrom (with a range of 1.0 to 2.5 Angstrom). This is commensurate to the performance of the CHARMM22 nonpolarizable model and other currently existing polarizable models. Importantly, secondary structural elements maintain native structure in general to within 1 Angstrom (both helix and beta-strands), again in good agreement with the nonpolarizable case. In qualitative agreement with QM/MM ab initio dynamics on crambin (Liu et al. Proteins 2001, 44, 484), there is a sequence dependence of average condensed phase atomic charge for all proteins, a dependence one would anticipate considering the differing chemical environments around individual atoms; this is a subtle quantum mechanical feature captured in the FQ model but absent in current state-of-the-art nonpolarizable models. Furthermore, there is a mutual polarization of solvent and protein in the condensed phase. Solvent dipole moment distributions within the first and second solvation shells around the protein display a shift towards higher dipole moments (increases on the order of 0.2-0.3 Debye) relative to the bulk; protein polarization is manifested via the enhanced condensed phase charges of typical polar atoms such as backbone carbonyl oxygens, amide nitrogens, and amide hydrogens. Finally, to enlarge the sample set of proteins, gas-phase minimizations and 1 ps constant temperature simulations are performed on various-sized proteins to compare to earlier work by Kaminsky et al. (J Comp Chem 2002, 23, 1515). The present work establishes the feasibility of applying a fully polarizable force field for protein simulations and demonstrates the approach employed in extending the CHARMM force field to include these effects. (C) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:1504 / 1514
页数:11
相关论文
共 85 条
[1]  
Allen M. P., 2009, Computer Simulation of Liquids
[2]   Gramicidin A channel as a test ground for molecular dynamics force fields [J].
Allen, TW ;
Bastug, T ;
Kuyucak, S ;
Chung, SH .
BIOPHYSICAL JOURNAL, 2003, 84 (04) :2159-2168
[3]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[4]   A stable fluctuating-charge polarizable model for molecular dynamics simulations: Application to aqueous electron transfers [J].
Ando, K .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (11) :5228-5237
[5]  
Anisimov VM, 2004, BIOPHYS J, V86, p415A
[6]  
[Anonymous], 1976, CHEM BONDS BONDS ENE
[7]   HYDROGEN-BONDING IN GLOBULAR-PROTEINS [J].
BAKER, EN ;
HUBBARD, RE .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1984, 44 (02) :97-179
[8]   Parametrizing a polarizable force field from ab initio data.: I.: The fluctuating point charge model [J].
Banks, JL ;
Kaminski, GA ;
Zhou, RH ;
Mainz, DT ;
Berne, BJ ;
Friesner, RA .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (02) :741-754
[9]   A WELL-BEHAVED ELECTROSTATIC POTENTIAL BASED METHOD USING CHARGE RESTRAINTS FOR DERIVING ATOMIC CHARGES - THE RESP MODEL [J].
BAYLY, CI ;
CIEPLAK, P ;
CORNELL, WD ;
KOLLMAN, PA .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (40) :10269-10280
[10]   Accurate ab initio quantum chemical determination of the relative energetics of peptide conformations and assessment of empirical force fields [J].
Beachy, MD ;
Chasman, D ;
Murphy, RB ;
Halgren, TA ;
Friesner, RA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (25) :5908-5920