RAGE: A novel target for drug intervention in diabetic vascular disease

被引:70
作者
Hudson, BI [1 ]
Schmidt, AM [1 ]
机构
[1] Columbia Univ, Coll Phys & Surg, New York, NY 10032 USA
关键词
advanced glycation end products; diabetes; immunoglobulin receptor; nephropathy; polymorphism; restenosis; vascular disease;
D O I
10.1023/B:PHAM.0000032992.75423.9b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
At high levels as seen in diabetes, glucose reacts with and forms adducts (advanced glycation end products; AGEs) on macromolecules including proteins and DNA, eliciting cellular dysfunction and leading to vascular disease. The major means is through cellular receptors; the best characterized is the receptor for advanced glycation end products (RAGE). Accumulation of both AGE/RAGE in addition to other identified ligands of RAGE, including S100/calgranulins, is the hallmark of this receptor in disease pathogenesis. Blockade of ligand-receptor interaction directly at the protein level, or transgenetically, prevents development of micro vascular (nephropathy) and macro vascular (atherosclerosis/restenosis) disease in small animal models. Furthermore, allelic variants of RAGE exist that alter the protein function and gene expression, which may further affect disease outcome. In conclusion, RAGE is a target for drug development to prevent vascular disease in diabetic and nondiabetic subjects.
引用
收藏
页码:1079 / 1086
页数:8
相关论文
共 74 条
[1]  
[Anonymous], 1997, LANCET S1
[2]  
[Anonymous], 1997, LANCET
[3]   MACROPHAGE SCAVENGER RECEPTOR MEDIATES THE ENDOCYTIC UPTAKE AND DEGRADATION OF ADVANCED GLYCATION END-PRODUCTS OF THE MAILLARD REACTION [J].
ARAKI, N ;
HIGASHI, T ;
MORI, T ;
SHIBAYAMA, R ;
KAWABE, Y ;
KODAMA, T ;
TAKAHASHI, K ;
SHICHIRI, M ;
HORIUCHI, S .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1995, 230 (02) :408-415
[4]  
Beisswenger P, 2003, DIABETES METAB, V29, pS95
[5]   AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept [J].
Bierhaus, A ;
Hofmann, MA ;
Ziegler, R ;
Nawroth, PP .
CARDIOVASCULAR RESEARCH, 1998, 37 (03) :586-600
[6]   Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy [J].
Bolton, WK ;
Cattran, DC ;
Williams, ME ;
Adler, SG ;
Appel, GB ;
Cartwright, K ;
Foiles, PG ;
Freedman, BI ;
Raskin, P ;
Ratner, RE ;
Spinowitz, BS ;
Whittier, FC ;
Wuerth, JP .
AMERICAN JOURNAL OF NEPHROLOGY, 2004, 24 (01) :32-40
[7]  
BRETT J, 1993, AM J PATHOL, V143, P1699
[8]   NONENZYMATIC GLYCOSYLATION PRODUCTS ON COLLAGEN COVALENTLY TRAP LOW-DENSITY LIPOPROTEIN [J].
BROWNLEE, M ;
VLASSARA, H ;
CERAMI, A .
DIABETES, 1985, 34 (09) :938-941
[9]   ADVANCED PROTEIN GLYCOSYLATION IN DIABETES AND AGING [J].
BROWNLEE, M .
ANNUAL REVIEW OF MEDICINE, 1995, 46 :223-234
[10]   AMINOGUANIDINE PREVENTS DIABETES-INDUCED ARTERIAL-WALL PROTEIN CROSS-LINKING [J].
BROWNLEE, M ;
VLASSARA, H ;
KOONEY, A ;
ULRICH, P ;
CERAMI, A .
SCIENCE, 1986, 232 (4758) :1629-1632