Effects of a sheared toroidal rotation on the stability boundary of the MHD modes in the tokamak edge pedestal

被引:28
作者
Aiba, N. [1 ]
Tokuda, S. [1 ]
Furukawa, M. [2 ]
Oyama, N. [1 ]
Ozeki, T. [1 ]
机构
[1] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan
[2] Univ Tokyo, Grad Sch Frontier Sci, Chiba 2778561, Japan
关键词
HYDROMAGNETIC STABILITY; BALLOONING MODES; PLASMA; REGIME; JT-60U; ELMS;
D O I
10.1088/0029-5515/49/6/065015
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Effects of a sheared toroidal rotation are investigated numerically on the stability of the MHD modes in the tokamak edge pedestal, which relate to the type-I edge-localized mode. A linear MHD stability code MINERVA is newly developed for solving the Frieman-Rotenberg equation that is the linear ideal MHD equation with flow. Numerical stability analyses with this code reveal that the sheared toroidal rotation destabilizes edge localized MHD modes for rotation frequencies which are experimentally achievable, though the ballooning mode stability changes little by rotation. This rotation effect on the edge MHD stability becomes stronger as the toroidal mode number of the unstable MHD mode increases when the stability analysis was performed for MHD modes with toroidal mode numbers smaller than 40. The toroidal mode number of the unstable MHD mode depends on the stabilization of the current-driven mode and the ballooning mode by increasing the safety factor. This dependence of the toroidal mode number of the unstable mode on the safety factor is considered to be the reason that the destabilization by toroidal rotation is stronger for smaller edge safety factors.
引用
收藏
页数:9
相关论文
共 19 条
[1]   Effects of 'sharpness' of the plasma cross-section on the MHD stability of tokamak edge plasmas [J].
Aiba, N. ;
Tokuda, S. ;
Takizuka, T. ;
Kurita, G. ;
Ozeki, T. .
NUCLEAR FUSION, 2007, 47 (04) :297-304
[2]  
AIBA N, 2009, COMPUT PHYS IN PRESS
[3]   Extension of the Newcomb equation into the vacuum for the stability analysis of tokamak edge plasmas [J].
Aiba, Nobuyuki ;
Tokuda, Shinji ;
Ishizawa, Tomoko ;
Okamoto, Masao .
COMPUTER PHYSICS COMMUNICATIONS, 2006, 175 (04) :269-289
[4]   AN ENERGY PRINCIPLE FOR HYDROMAGNETIC STABILITY PROBLEMS [J].
BERNSTEIN, IB ;
FRIEMAN, EA ;
KRUSKAL, MD ;
KULSRUD, RM .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1958, 244 (1236) :17-40
[5]   Magnetohydrodynamic stability of tokamak edge plasmas [J].
Connor, JW ;
Hastie, RJ ;
Wilson, HR ;
Miller, RL .
PHYSICS OF PLASMAS, 1998, 5 (07) :2687-2700
[6]   Chapter 2: Plasma confinement and transport [J].
Department of Electrical Engineering, PSTI, University of California, Los Angeles, CA, United States ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 ;
不详 .
Nucl Fusion, 2007, 6 (S18-S127) :S18-S127
[7]   ON HYDROMAGNETIC STABILITY OF STATIONARY EQUILIBRIA [J].
FRIEMAN, E ;
ROTENBERG, M .
REVIEWS OF MODERN PHYSICS, 1960, 32 (04) :898-902
[8]   Geometrical improvements of rotational stabilization of high-n ballooning modes in tokamaks [J].
Furukawa, M ;
Tokuda, S ;
Wakatani, M .
NUCLEAR FUSION, 2003, 43 (06) :425-429
[9]   THE 2ND REGION OF STABILITY AGAINST BALLOONING MODES [J].
GREENE, JM ;
CHANCE, MS .
NUCLEAR FUSION, 1981, 21 (04) :453-464
[10]  
GRIMM RC, 1984, 2090 PRINC PLASM PHY