TGFβ1, back to the future -: Revisiting its role as a transforming growth factor

被引:50
作者
Glick, AB [1 ]
机构
[1] NCI, Cellular Carcinogenesis & Tumor Promot Lab, Canc Res Ctr, Bethesda, MD 20289 USA
关键词
TGF beta 1; tumor progression; metastasis; mouse models; neovascularization; EMT;
D O I
10.4161/cbt.3.3.849
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
TGFbeta1 was initially identified in culture media from transformed cells as part of a factor that could produce a transformed phenotype in a nontransformed cell line. Subsequently this activity was separated into TGFbeta and TGFalpha, an EGF receptor ligand. With the discovery that TGFbeta1 was a potent growth inhibitor of epithelial cells, and the identification of inactivating mutations within the TGFbeta1 signaling pathway in cancers it became clear that TGFbeta1 signaling is a tumor suppressor pathway for early stages of cancer. However many human carcinomas overexpress TGFbeta1 and this is associated with poor patient prognosis and increased frequency of metastasis. Similar results have been obtained with tumor cell lines and experimental animal models. Thus stage specific duality of function is the emerging paradigm for the role of TGFbeta1 in cancer. This review will focus on the evidence for TGFbeta1 as a tumor promoting and metastasis factor and examine the biological and molecular basis for these effects. It is proposed that the switch from tumor suppressor to oncogene reflects genetic or epigenetic alterations in signaling pathways in tumor cells that alter the readout from the TGFbeta1 pathway.
引用
收藏
页码:276 / 283
页数:8
相关论文
共 99 条
[1]   TGF-β signaling in cancer -: a double-edged sword [J].
Akhurst, RJ ;
Derynck, R .
TRENDS IN CELL BIOLOGY, 2001, 11 (11) :S44-S51
[2]   Expression of a dominant negative type II TGF-β receptor in mouse skin results in an increase in carcinoma incidence and an acceleration of carcinoma development [J].
Amendt, C ;
Schirmacher, P ;
Weber, H ;
Blessing, M .
ONCOGENE, 1998, 17 (01) :25-34
[3]   ALTERED METABOLIC AND ADHESIVE PROPERTIES AND INCREASED TUMORIGENESIS ASSOCIATED WITH INCREASED EXPRESSION OF TRANSFORMING GROWTH FACTOR-BETA-1 [J].
ARRICK, BA ;
LOPEZ, AR ;
ELFMAN, F ;
EBNER, R ;
DAMSKY, CH ;
DERYNCK, R .
JOURNAL OF CELL BIOLOGY, 1992, 118 (03) :715-726
[4]  
ARTEAGA CL, 1993, CELL GROWTH DIFFER, V4, P193
[5]   Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration [J].
Bakin, AV ;
Tomlinson, AK ;
Bhowmick, NA ;
Moses, HL ;
Arteaga, CL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (47) :36803-36810
[6]  
Benckert C, 2003, CANCER RES, V63, P1083
[7]   TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia [J].
Bhowmick, NA ;
Chytil, A ;
Plieth, D ;
Gorska, AE ;
Dumont, N ;
Shappell, S ;
Washington, MK ;
Neilson, EG ;
Moses, HL .
SCIENCE, 2004, 303 (5659) :848-851
[8]   Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism [J].
Bhowmick, NA ;
Ghiassi, M ;
Bakin, A ;
Aakre, M ;
Lundquist, CA ;
Engel, ME ;
Arteaga, CL ;
Moses, HL .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (01) :27-36
[9]   Correlation of Snail expression with histological grade and lymph node status in breast carcinomas [J].
Blanco, MJ ;
Moreno-Bueno, G ;
Sarrio, D ;
Locascio, A ;
Cano, A ;
Palacios, J ;
Nieto, MA .
ONCOGENE, 2002, 21 (20) :3241-3246
[10]   CHEMICAL SKIN CARCINOGENESIS IS PREVENTED IN MICE BY THE INDUCED EXPRESSION OF A TGF-BETA RELATED TRANSGENE [J].
BLESSING, M ;
NANNEY, LB ;
KING, LE ;
HOGAN, BLM .
TERATOGENESIS CARCINOGENESIS AND MUTAGENESIS, 1995, 15 (01) :11-21