RNA conformation in the Tat-TAR complex determined by site-specific photo-cross-linking

被引:65
作者
Wang, ZY
Rana, TM
机构
[1] UNIV MED & DENT NEW JERSEY, ROBERT WOOD JOHNSON MED SCH, DEPT PHARMACOL, PISCATAWAY, NJ 08854 USA
[2] RUTGERS STATE UNIV, BIOCHEM & MOLEC BIOL GRAD PROGRAM, PISCATAWAY, NJ 08854 USA
关键词
D O I
10.1021/bi960037p
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transcriptional regulation in human immunodeficiency virus type 1 (HIV-1) requires specific interactions of Tat protein with the transactivation responsive region (TAR) RNA, a 59-base stem-loop structure located at the 5'-end of all mRNAs. We have used a site-specific cross-linking method based on 4-thiouracil (4-thioU) photochemistry to determine the conformation of TAR RNA and its interaction with Tat protein under physiological conditions. Three different TAR RNA constructs with a single 4-thioU residue at position 23, 38, or 40 were synthesized. Upon UV irradiation, 4-thioU at all three positions formed interstrand covalent cross-links in TAR RNA. Determination of cross-link sites by RNA sequencing revealed that 4-thioU at position 23 makes a direct contact with U40, while a 4-thioU at position 40 cross-links to C24 and C25, and at position 38, 4-thioU contacts G26 in TAR RNA. The addition of arginine did not alter the yield or the site of RNA-RNA cross-links. However, in the presence of Tat(38-72), UV irradiation of RNA modified with 4-thioU at position 23 or 38 resulted in RNA-protein cross-links, but no RNA-RNA cross-links were observed. 4-thioU at position 40 formed both RNA-RNA and RNA-protein cross-links in the presence of Tat(38-72). An intriguing finding of our studies was that a cross-linked TAR RNA with 4-thioU at position 40 retained specific Tat-binding activity. Our results establish four important conclusions about Tat-TAR structure. (1) U23 of free TAR RNA is in close contact with U40. (2) U40 is in close proximity to C24 and C25 both in free TAR RNA and in a complex with Tat. (3) Tat protein directly contacts U23, U38, and U40 in the major groove of TAR RNA. (4) Tat protein can recognize a TAR RNA structure containing an interrupted bulge which is formed by a covalent link between U40 and two bulge residues, C24 and C25. These structural studies provide new insights into tertiary folding of TAR RNA and its interaction with Tat protein.
引用
收藏
页码:6491 / 6499
页数:9
相关论文
共 59 条
[1]   THE STRUCTURE OF THE HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 TAR RNA REVEALS PRINCIPLES OF RNA RECOGNITION BY TAT PROTEIN [J].
ABOULELA, F ;
KARN, J ;
VARANI, G .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 253 (02) :313-332
[2]   TAT TRANS-ACTIVATES THE HUMAN IMMUNODEFICIENCY VIRUS THROUGH A NASCENT RNA TARGET [J].
BERKHOUT, B ;
SILVERMAN, RH ;
JEANG, KT .
CELL, 1989, 59 (02) :273-282
[3]   IDENTIFICATION OF AN AMINO ACID-BASE CONTACT IN THE GCN4-DNA COMPLEX BY BROMOURACIL-MEDIATED PHOTO-CROSS-LINKING [J].
BLATTER, EE ;
EBRIGHT, YW ;
EBRIGHT, RH .
NATURE, 1992, 359 (6396) :650-652
[4]  
BRIMACOMBE R, 1988, METHOD ENZYMOL, V164, P287
[5]   THE RNA ELEMENT ENCODED BY THE TRANS-ACTIVATION-RESPONSIVE REGION OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 IS FUNCTIONAL WHEN DISPLACED DOWNSTREAM OF THE START OF TRANSCRIPTION [J].
CHURCHER, MJ ;
LOWE, AD ;
GAIT, MJ ;
KARN, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (06) :2408-2412
[6]   HIGH-AFFINITY BINDING OF TAR RNA BY THE HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 TAT PROTEIN REQUIRES BASE-PAIRS IN THE RNA STEM AND AMINO-ACID-RESIDUES FLANKING THE BASIC REGION [J].
CHURCHER, MJ ;
LAMONT, C ;
HAMY, F ;
DINGWALL, C ;
GREEN, SM ;
LOWE, AD ;
BUTLER, PJG ;
GAIT, MJ ;
KARN, J .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 230 (01) :90-110
[7]   UNUSUAL STRUCTURE OF THE HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 TRANSACTIVATION RESPONSE ELEMENT [J].
COLVIN, RA ;
GARCIABLANCO, MA .
JOURNAL OF VIROLOGY, 1992, 66 (02) :930-935
[8]   SEQUENCE-SPECIFIC INTERACTION OF TAT PROTEIN AND TAT PEPTIDES WITH THE TRANSACTIVATION-RESPONSIVE SEQUENCE ELEMENT OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 INVITRO [J].
CORDINGLEY, MG ;
LAFEMINA, RL ;
CALLAHAN, PL ;
CONDRA, JH ;
SARDANA, VV ;
GRAHAM, DJ ;
NGUYEN, TM ;
LEGROW, K ;
GOTLIB, L ;
SCHLABACH, AJ ;
COLONNO, RJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (22) :8985-8989
[9]   MECHANISM OF ACTION OF REGULATORY PROTEINS ENCODED BY COMPLEX RETROVIRUSES [J].
CULLEN, BR .
MICROBIOLOGICAL REVIEWS, 1992, 56 (03) :375-394
[10]   TRANSACTIVATION OF HUMAN-IMMUNODEFICIENCY-VIRUS OCCURS VIA A BIMODAL MECHANISM [J].
CULLEN, BR .
CELL, 1986, 46 (07) :973-982