Immobilization of DNA onto poly(dimethylsiloxane) surfaces and application to a microelectrochemical enzyme-amplified DNA hybridization assay

被引:70
作者
Liu, DJ [1 ]
Perdue, RK [1 ]
Sun, L [1 ]
Crooks, RM [1 ]
机构
[1] Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA
关键词
D O I
10.1021/la049605p
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper describes immobilization of DNA onto the interior walls of poly(dimethylsiloxane) (PDMS) microsystems and its application to an enzyme-amplified electrochemical DNA assay. DNA immobilization was carried out by silanization of the PDMS surface with 3-mercaptopropyltrimethoxysilane to yield a thiol-terminated surface. 5'-acrylamide-modified DNA reacts with the pendant thiol groups to yield DNA-modified PDMS. Surface-immobilized DNA oligos serve as capture probes for target DNA. Biotin-labeled target DNA hybridizes to the PDMS-immobilized capture DNA, and subsequent introduction of alkaline phosphatase (AP) conjugated to streptavidin results in attachment of the enzyme to hybridized DNA. Electrochemical detection of DNA hybridization benefits from enzyme amplification. Specifically, AP converts electroinactive p-aminophenyl phosphate to electroactive p-aminophenol, which is detected using an indium tin oxide interdigitated array (IDA) electrode. The IDA electrode eliminates the need for a reference electrode and provides a steady-state current that is related to the concentration of hybridized DNA. At present, the limit of detection of the DNA target is 1 nM in a volume of 20 nL, which corresponds to 20 attomoles of DNA.
引用
收藏
页码:5905 / 5910
页数:6
相关论文
共 49 条
[1]   Immobilized enzyme-linked DNA-hybridization assay with electrochemical detection for Cryptosporidium parvum hsp70 mRNA [J].
Aguilar, ZP ;
Fritsch, I .
ANALYTICAL CHEMISTRY, 2003, 75 (15) :3890-3897
[2]   Micro total analysis systems. 2. Analytical standard operations and applications [J].
Auroux, PA ;
Iossifidis, D ;
Reyes, DR ;
Manz, A .
ANALYTICAL CHEMISTRY, 2002, 74 (12) :2637-2652
[3]  
Becker H, 2000, ELECTROPHORESIS, V21, P12, DOI 10.1002/(SICI)1522-2683(20000101)21:1<12::AID-ELPS12>3.3.CO
[4]  
2-Z
[5]   Physics and applications of microfluidics in biology [J].
Beebe, DJ ;
Mensing, GA ;
Walker, GM .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2002, 4 :261-286
[6]   Plastic advances microfluidic devices. [J].
Boone, T ;
Fan, ZH ;
Hooper, H ;
Ricco, A ;
Tan, HD ;
Williams, S .
ANALYTICAL CHEMISTRY, 2002, 74 (03) :78A-86A
[7]   BENZOQUINONE IMINES .14. KINETICS AND MECHANISM OF THE COUPLING OF PARA-BENZOQUINONE MONOIMINES WITH META-AMINOPHENOLS [J].
BROWN, KC ;
CORBETT, JF ;
LABINSON, R .
JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2, 1978, (12) :1292-1296
[8]   An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities [J].
Choi, JW ;
Oh, KW ;
Thomas, JH ;
Heineman, WR ;
Halsall, HB ;
Nevin, JH ;
Helmicki, AJ ;
Henderson, HT ;
Ahn, CH .
LAB ON A CHIP, 2002, 2 (01) :27-30
[9]   Direct enzyme-amplified electrical recognition of a 30-base model oligonucleotide [J].
deLumleyWoodyear, T ;
Campbell, CN ;
Heller, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (23) :5504-5505
[10]   Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography [J].
Demers, LM ;
Ginger, DS ;
Park, SJ ;
Li, Z ;
Chung, SW ;
Mirkin, CA .
SCIENCE, 2002, 296 (5574) :1836-1838