Analysis of the inexact Uzawa algorithm for saddle point problems

被引:352
作者
Bramble, JH [1 ]
Pasciak, JE [1 ]
Vassilev, AT [1 ]
机构
[1] SCHLUMBERGER GEOQUEST,AUSTIN,TX 78726
关键词
indefinite systems; iterative methods; preconditioners; saddle point problems; Stokes equations; Uzawa algorithm;
D O I
10.1137/S0036142994273343
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the so-called ''inexact Uzawa'' algorithm for iteratively solving linear block saddle point problems. Such saddle point problems arise, for example, in finite element and finite difference discretizations of Stokes equations, the equations of elasticity and mixed finite element discretization of second-order problems. We consider both the linear and nonlinear variants of the inexact Uzawa iteration. We show that the linear method always converges as long as the preconditioners defining the algorithm are properly scaled. Bounds for the rate of convergence are provided in terms of the rate of convergence for the preconditioned Uzawa algorithm and the reduction factor corresponding to the preconditioner for the upper left-hand block. In the case of nonlinear iteration, the inexact Uzawa algorithm is shown to converge provided that the nonlinear process approximating the inverse of the upper left-hand block is of sufficient accuracy. Bounds for the nonlinear iteration are given in terms of this accuracy parameter and the rate of convergence of the preconditioned linear Uzawa algorithm. Applications to the Stokes equations and mixed finite element discretization of second-order elliptic problems are discussed and, finally, the results of numerical experiments involving the algorithms are presented.
引用
收藏
页码:1072 / 1092
页数:21
相关论文
共 31 条
[1]  
[Anonymous], 1958, STUD LINEAR NONLINEA
[2]  
[Anonymous], DOMAIN DECOMPOSITION
[3]  
[Anonymous], 1993, PITMAN RES NOTES MAT
[4]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[5]  
BANK RE, 1990, NUMER MATH, V56, P645, DOI 10.1007/BF01405194
[6]  
BRAMBLE J, IN PRESS J COMPUTERS
[7]  
BRAMBLE JH, 1991, MATH COMPUT, V56, P1, DOI 10.1090/S0025-5718-1991-1052086-4
[8]  
BRAMBLE JH, 1988, MATH COMPUT, V50, P1, DOI 10.1090/S0025-5718-1988-0917816-8
[9]   THE LAGRANGE MULTIPLIER METHOD FOR DIRICHLETS PROBLEM [J].
BRAMBLE, JH .
MATHEMATICS OF COMPUTATION, 1981, 37 (155) :1-11
[10]   A DOMAIN DECOMPOSITION TECHNIQUE FOR STOKES PROBLEMS [J].
BRAMBLE, JH ;
PASCIAK, JE .
APPLIED NUMERICAL MATHEMATICS, 1990, 6 (04) :251-261