Energetic analysis of the rhodopsin-G-protein complex links the α5 helix to GDP release

被引:59
作者
Alexander, Nathan S. [1 ]
Preininger, Anita M. [2 ]
Kaya, Ali I. [2 ]
Stein, Richard A. [3 ]
Hamm, Heidi E. [2 ]
Meiler, Jens [1 ,2 ]
机构
[1] Vanderbilt Univ, Dept Chem, Nashville, TN USA
[2] Vanderbilt Univ, Dept Pharmacol, Nashville, TN 37212 USA
[3] Vanderbilt Univ, Dept Mol Physiol & Biophys, Nashville, TN 37232 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
HETEROTRIMERIC G-PROTEINS; BETA(2) ADRENERGIC-RECEPTOR; LIGHT-ACTIVATED RHODOPSIN; GTP-GAMMA-S; CRYSTAL-STRUCTURE; DISTANCE MEASUREMENTS; CONFORMATIONAL-CHANGES; NUCLEOTIDE EXCHANGE; TRANSDUCIN; PREDICTION;
D O I
10.1038/nsmb.2705
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We present a model of interaction of G(i) protein with the activated receptor (R*) rhodopsin, which pinpoints energetic contributions to activation and reconciles the beta(2) adrenergic receptor-G(s) crystal structure with new and previously published experimental data. In silico analysis demonstrated energetic changes when the G alpha C-terminal helix (alpha 5) interacts with the R* cytoplasmic pocket, thus leading to displacement of the helical domain and GDP release. The model features a less dramatic domain opening compared with the crystal structure. The alpha 5 helix undergoes a 63 degrees rotation, accompanied by a 5.7-angstrom translation, that reorganizes interfaces between alpha 5 and alpha 1 helices and between alpha 5 and beta 6-alpha 5. Changes in the beta 6-alpha 5 loop displace alpha G. All of these movements lead to opening of the GDP-binding pocket. The model creates a roadmap for experimental studies of receptor-mediated G-protein activation.
引用
收藏
页码:56 / +
页数:10
相关论文
共 44 条
[1]   De novo high-resolution protein structure determination from sparse spin-labeling EPR data [J].
Alexander, Nathan ;
Bortolus, Marco ;
Al-Mestarihi, Ahmad ;
Mchaourab, Hassane ;
Meilerl, Jens .
STRUCTURE, 2008, 16 (02) :181-195
[2]   Toward high-resolution prediction and design of transmembrane helical protein structures [J].
Barth, P. ;
Schonbrun, J. ;
Baker, D. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (40) :15682-15687
[3]   Prediction of membrane protein structures with complex topologies using limited constraints [J].
Barth, P. ;
Wallner, B. ;
Baker, D. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (05) :1409-1414
[4]   Protein structure determination using long-distance constraints from double-quantum coherence ESR: Study of T4 lysozyme [J].
Borbat, PP ;
Mchaourab, HS ;
Freed, JH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (19) :5304-5314
[5]   Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: A new homology modeling tool [J].
Bower, MJ ;
Cohen, FE ;
Dunbrack, RL .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 267 (05) :1268-1282
[6]   Toward high-resolution de novo structure prediction for small proteins [J].
Bradley, P ;
Misura, KMS ;
Baker, D .
SCIENCE, 2005, 309 (5742) :1868-1871
[7]   Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking: Use of a photoactivatable reagent [J].
Cai, K ;
Itoh, Y ;
Khorana, FC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (09) :4877-4882
[8]   Molecular dynamics simulations of transducin: interdomain and front to back communication in activation and nucleotide exchange [J].
Ceruso, MA ;
Periole, X ;
Weinstein, H .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 338 (03) :469-481
[9]   The determination of pair distance distributions by pulsed ESR using Tikhonov regularization [J].
Chiang, YW ;
Borbat, PP ;
Freed, JH .
JOURNAL OF MAGNETIC RESONANCE, 2005, 172 (02) :279-295
[10]   Crystal structure of metarhodopsin II [J].
Choe, Hui-Woog ;
Kim, Yong Ju ;
Park, Jung Hee ;
Morizumi, Takefumi ;
Pai, Emil F. ;
Krauss, Norbert ;
Hofmann, Klaus Peter ;
Scheerer, Patrick ;
Ernst, Oliver P. .
NATURE, 2011, 471 (7340) :651-U137