Estimating Three-Dimensional Cloud Structure via Statistically Blended Satellite Observations

被引:60
作者
Miller, Steven D. [1 ]
Forsythe, John M. [1 ]
Partain, Philip T. [1 ]
Haynes, John M. [1 ]
Bankert, Richard L. [2 ]
Sengupta, Manajit [3 ]
Mitrescu, Cristian [4 ]
Hawkins, Jeffrey D. [2 ]
Vonder Haar, Thomas H. [5 ]
机构
[1] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA
[2] Naval Res Lab, Monterey, CA USA
[3] Natl Renewable Energy Lab, Golden, CO USA
[4] Sci Syst & Applicat Inc, Hampton, VA USA
[5] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA
关键词
A-TRAIN; CIRRUS CLOUDS; ALGORITHM; MISSION; TEMPERATURE; THICKNESS; SCIENCE; HEIGHT; MODELS; SPACE;
D O I
10.1175/JAMC-D-13-070.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The launch of the NASA CloudSat in April 2006 enabled the first satellite-based global observation of vertically resolved cloud information. However, CloudSat's nonscanning W-band (94 GHz) Cloud Profiling Radar (CPR) provides only a nadir cross section, or "curtain,'' of the atmosphere along the satellite ground track, precluding a full three-dimensional (3D) characterization and thus limiting its utility for certain model verification and cloud-process studies. This paper details an algorithm for extending a limited set of vertically resolved cloud observations to form regional 3D cloud structure. Predicated on the assumption that clouds of the same type (e. g., cirrus, cumulus, and stratocumulus) often share geometric and microphysical properties as well, the algorithm identifies cloud-type-dependent correlations and uses them to estimate cloud-base height and liquid/ice water content vertical structure. These estimates, when combined with conventional retrievals of cloud-top height, result in a 3D structure for the topmost cloud layer. The technique was developed on multiyear CloudSat data and applied to Moderate Resolution Imaging Spectroradiometer (MODIS) swath data from the NASA Aqua satellite. Data-exclusion experiments along the CloudSat ground track show improved predictive skill over both climatology and type-independent nearest-neighbor estimates. More important, the statistical methods, which employ a dynamic range-dependent weighting scheme, were also found to outperform type-dependent near-neighbor estimates. Application to the 3D cloud rendering of a tropical cyclone is demonstrated.
引用
收藏
页码:437 / 455
页数:19
相关论文
共 56 条
[1]  
[Anonymous], 2012, INTRO DYNAMIC METEOR
[2]  
[Anonymous], J GEOSCIENCE RES
[3]  
Arakawa A., 1975, The Physical Basis of Climate and Climate Modelling, V16, P181
[4]   AIRS/AMSU/HSB on the aqua mission: Design, science objectives, data products, and processing systems [J].
Aumann, HH ;
Chahine, MT ;
Gautier, C ;
Goldberg, MD ;
Kalnay, E ;
McMillin, LM ;
Revercomb, H ;
Rosenkranz, PW ;
Smith, WL ;
Staelin, DH ;
Strow, LL ;
Susskind, J .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (02) :253-264
[5]   Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature [J].
Austin, Richard T. ;
Heymsfield, Andrew J. ;
Stephens, Graeme L. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114
[6]   Comparison of GOES Cloud Classification Algorithms Employing Explicit and Implicit Physics [J].
Bankert, Richard L. ;
Mitrescu, Cristian ;
Miller, Steven D. ;
Wade, Robert H. .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2009, 48 (07) :1411-1421
[7]   A 3D cloud-construction algorithm for the EarthCARE satellite mission [J].
Barker, H. W. ;
Jerg, M. P. ;
Wehr, T. ;
Kato, S. ;
Donovan, D. P. ;
Hogan, R. J. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (657) :1042-1058
[8]  
Baum BA, 1995, J ATMOS SCI, V52, P4210, DOI 10.1175/1520-0469(1995)052<4210:SRSOMC>2.0.CO
[9]  
2
[10]   An overview of the ACE-2 CLOUDYCOLUMN closure experiment [J].
Brenguier, JL ;
Chuang, PY ;
Fouquart, Y ;
Johnson, DW ;
Parol, F ;
Pawlowska, H ;
Pelon, J ;
Schüller, L ;
Schröder, F ;
Snider, J .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2000, 52 (02) :815-827