MINERVA: Ideal MHD stability code for toroidally rotating tokamak plasmas

被引:34
作者
Aiba, N. [1 ]
Tokuda, S. [1 ]
Furukawa, M. [2 ]
Snyder, P. B. [3 ]
Chu, M. S. [3 ]
机构
[1] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan
[2] Univ Tokyo, Grad Sch Frontier Sci, Chiba 2778561, Japan
[3] Gen Atom Co, San Diego, CA 92186 USA
关键词
Ideal MHD stability; Frieman-Rotenberg equation; Rotation; ELMs; Tokamak; EDGE LOCALIZED INSTABILITIES; BALLOONING MODES; HYDROMAGNETIC STABILITY; FEEDBACK STABILIZATION; NEWCOMB EQUATION; DIII-D; PHYSICS; SHEAR; DYNAMICS; PEDESTAL;
D O I
10.1016/j.cpc.2009.02.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new linear MHD stability code MINERVA is developed for investigating a toroidal rotation effect on the stability of ideal MHD modes in tokamak plasmas. This code solves the Frieman-Rotenberg equation as not only the generalized eigenvalue problem but also the initial value problem. The parallel computing method used in this code realizes the stability analysis of both long and short wavelength MHD modes in short time. The results of some benchmarking tests show the validity of this MINERVA code. The numerical study with MINERVA about the toroidal rotation effect on the edge MHD stability shows that the rotation shear destabilizes the intermediate wavelength modes but stabilizes the short wavelength edge localized MHD modes, though the rotation frequency destabilizes both the long and the short wavelength MHD modes. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1282 / 1304
页数:23
相关论文
共 48 条
[1]  
Aiba N., 2007, Plasma and Fusion Research, V2, P010, DOI [10.1585/pfr.2.010., DOI 10.1585/PFR.2.010]
[2]   Extension of the Newcomb equation into the vacuum for the stability analysis of tokamak edge plasmas [J].
Aiba, Nobuyuki ;
Tokuda, Shinji ;
Ishizawa, Tomoko ;
Okamoto, Masao .
COMPUTER PHYSICS COMMUNICATIONS, 2006, 175 (04) :269-289
[3]  
Azumi M., 1984, P 6 INT C PLASM PHYS, V1, P200
[4]   Edge localized mode physics and operational aspects in tokamaks [J].
Bécoulet, M ;
Huysmans, G ;
Sarazin, Y ;
Garbet, X ;
Ghendrih, P ;
Rimini, F ;
Joffrin, E ;
Litaudon, X ;
Monier-Garbet, P ;
Ané, JM ;
Thomas, P ;
Grosman, A ;
Parail, V ;
Wilson, H ;
Lomas, P ;
DeVries, P ;
Zastrow, KD ;
Matthews, GF ;
Lonnroth, J ;
Gerasimov, S ;
Sharapov, S ;
Gryaznevich, M ;
Counsell, G ;
Kirk, A ;
Valovic, M ;
Buttery, R ;
Loarte, A ;
Saibene, G ;
Sartori, R ;
Leonard, A ;
Snyder, P ;
Lao, LL ;
Gohil, P ;
Evans, TE ;
Moyer, RA ;
Kamada, Y ;
Chankin, A ;
Oyama, N ;
Hatae, T ;
Asakura, N ;
Tudisco, O ;
Giovannozzi, E ;
Crisanti, F ;
Perez, CP ;
Koslowski, HR ;
Eich, T ;
Sips, A ;
Horton, L ;
Hermann, A ;
Lang, P .
PLASMA PHYSICS AND CONTROLLED FUSION, 2003, 45 (12 A) :A93-A113
[5]   AN ENERGY PRINCIPLE FOR HYDROMAGNETIC STABILITY PROBLEMS [J].
BERNSTEIN, IB ;
FRIEMAN, EA ;
KRUSKAL, MD ;
KULSRUD, RM .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1958, 244 (1236) :17-40
[6]  
BETTI R, 1994, PHYS REV LETT, V74
[7]   Modeling of active control of external magnetohydrodynamic instabilities [J].
Bialek, J ;
Boozer, AH ;
Mauel, ME ;
Navratil, GA .
PHYSICS OF PLASMAS, 2001, 8 (05) :2170-2180
[8]  
Blackford L., 1997, ScaLAPACK Users Guide
[9]   PHOENIX: MHD spectral code for rotating laboratory and gravitating astrophysical plasmas [J].
Blokland, J. W. S. ;
van der Holst, B. ;
Keppens, R. ;
Goedbloed, J. P. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 226 (01) :509-533
[10]   STABILIZATION OF EXTERNAL-MODES IN TOKAMAKS BY RESISTIVE WALLS AND PLASMA ROTATION [J].
BONDESON, A ;
WARD, DJ .
PHYSICAL REVIEW LETTERS, 1994, 72 (17) :2709-2712