Modern computational approaches for analysing molecular genetic variation data

被引:151
作者
Marjoram, Paul
Tavare, Simon
机构
[1] Univ So Calif, Keck Sch Med Prevent Med, Los Angeles, CA 90089 USA
[2] Univ So Calif, Program Mol & Computat Biol, Los Angeles, CA 90089 USA
[3] Univ Cambridge, Dept Appl Math & Theoret Phys, Ctr Math Sci, Cambridge CB3 0WA, England
基金
美国国家卫生研究院;
关键词
D O I
10.1038/nrg1961
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
An explosive growth is occurring in the quantity, quality and complexity of molecular variation data that are being collected. Historically, such data have been analysed by using model-based methods. Models are useful for sharpening intuition, for explanation and for prediction: they add to our understanding of how the data were formed, and they can provide quantitative answers to questions of interest. We outline some of these model-based approaches, including the coalescent, and discuss the applicability of the computational methods that are necessary given the highly complex nature of current and future data sets.
引用
收藏
页码:759 / 770
页数:12
相关论文
共 99 条
[1]   A haplotype map of the human genome [J].
Altshuler, D ;
Brooks, LD ;
Chakravarti, A ;
Collins, FS ;
Daly, MJ ;
Donnelly, P ;
Gibbs, RA ;
Belmont, JW ;
Boudreau, A ;
Leal, SM ;
Hardenbol, P ;
Pasternak, S ;
Wheeler, DA ;
Willis, TD ;
Yu, FL ;
Yang, HM ;
Zeng, CQ ;
Gao, Y ;
Hu, HR ;
Hu, WT ;
Li, CH ;
Lin, W ;
Liu, SQ ;
Pan, H ;
Tang, XL ;
Wang, J ;
Wang, W ;
Yu, J ;
Zhang, B ;
Zhang, QR ;
Zhao, HB ;
Zhao, H ;
Zhou, J ;
Gabriel, SB ;
Barry, R ;
Blumenstiel, B ;
Camargo, A ;
Defelice, M ;
Faggart, M ;
Goyette, M ;
Gupta, S ;
Moore, J ;
Nguyen, H ;
Onofrio, RC ;
Parkin, M ;
Roy, J ;
Stahl, E ;
Winchester, E ;
Ziaugra, L ;
Shen, Y .
NATURE, 2005, 437 (7063) :1299-1320
[2]  
[Anonymous], HDB STAT GENETICS
[3]  
[Anonymous], 1979, ROBUSTNESS STAT
[4]  
[Anonymous], 1998, COMMUN STAT STOCH MO, DOI [10.1080/15326349808807471, DOI 10.1080/15326349808807471]
[5]  
[Anonymous], 2005, Gene Genealogies, Variation and Evolution: A Primer in Coalescent Theory
[6]   A tutorial on statistical methods for population association studies [J].
Balding, David J. .
NATURE REVIEWS GENETICS, 2006, 7 (10) :781-791
[7]  
Beaumont MA, 2002, GENETICS, V162, P2025
[8]  
Beerli P, 1999, GENETICS, V152, P763
[9]  
BORTOT P, IN PRESS J AM STAT A
[10]   Convergence assessment techniques for Markov chain Monte Carlo [J].
Brooks, SP ;
Roberts, GO .
STATISTICS AND COMPUTING, 1998, 8 (04) :319-335