The use of QR factorization in sparse quadratic programming and backward error issues

被引:15
作者
Arioli, M [1 ]
机构
[1] CNR, Ist Anal Numer, I-27100 Pavia, Italy
关键词
augmented systems; sparse matrices; orthogonal factorization; roundoff;
D O I
10.1137/S0895479898338147
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a roundoff error analysis of a null space method for solving quadratic programming minimization problems. This method combines the use of a direct QR factorization of the constraints with an iterative solver on the corresponding null space. Numerical experiments are presented which give evidence of the good performances of the algorithm on sparse matrices.
引用
收藏
页码:825 / 839
页数:15
相关论文
共 35 条
[1]  
ARIOLI M, 1999, 1150 IANCNR
[2]  
BALDINI L, 1997, THESIS U PAVIA PAVIA
[3]   ITERATIVE METHODS FOR EQUALITY-CONSTRAINED LEAST-SQUARES PROBLEMS [J].
BARLOW, JL ;
NICHOLS, NK ;
PLEMMONS, RJ .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (05) :892-906
[4]  
Bjorck, 1996, NUMERICAL METHODS LE, V5, P497, DOI DOI 10.1137/1.9781611971484
[5]   THE NULL SPACE PROBLEM .1. COMPLEXITY [J].
COLEMAN, TF ;
POTHEN, A .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1986, 7 (04) :527-537
[6]   PREDICTING FILL FOR SPARSE ORTHOGONAL FACTORIZATION [J].
COLEMAN, TF ;
EDENBRANDT, A ;
GILBERT, JR .
JOURNAL OF THE ACM, 1986, 33 (03) :517-532
[7]   Accuracy and stability of the null space method for solving the equality constrained least squares problem [J].
Cox, AJ ;
Higham, NJ .
BIT NUMERICAL MATHEMATICS, 1999, 39 (01) :34-50
[8]   FLOATING-POINT TECHNIQUE FOR EXTENDING AVAILABLE PRECISION [J].
DEKKER, TJ .
NUMERISCHE MATHEMATIK, 1971, 18 (03) :224-+
[10]  
Galligani E, 1997, BOLL UNIONE MAT ITAL, V11A, P595