Quantum-Dot-Sensitized Solar Cell Using a Photoanode Prepared by in Situ Photodeposition of CdS on Nanocrystalline TiO2 Films

被引:50
作者
Jin-nouchi, Yasuaki [1 ]
Naya, Shin-ichi [2 ]
Tada, Hiroaki [1 ,2 ]
机构
[1] Kinki Univ, Sch Sci & Engn, Dept Appl Chem, 3-4-1 Kowakae, Higashiosaka, Osaka 5778502, Japan
[2] Kinki Univ, Environm Res Lab, Higashiosaka, Osaka 5778502, Japan
关键词
D O I
10.1021/jp1062226
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CdS quantum dots (QDs) have been incorporated into mesoporous TiO2 nanocrystalline films by a photodeposition (PD) technique we have recently developed [CdS(PD)/mp-TiO2], and for comparison, the conventional successive ionic layer adsorption and reaction (SILAR) and self-assembled monolayer (SAM) methods have also been used for preparing the coupling system. The most important characterstic of the PD technique is that the efficicent interfacial charge transfer between the semiconductors is guaranteed because the photocatalytic redox property of TiO2 is taken advatage of to form the heteronanojunction. The N-2 adsorption-desorption data analysis by the Barret-Joyner-Halenda method and the elemental depth profile by electron probe microanalysis showed that CdS QDs are distributed in the mesopores of the film without pore-blocking in the PD sample and with partial pore-blocking in the SILAR sample, whereas only the upper part of the film is covered with CdS QDs in the SAM sample. The PD technique enables one to control the loading amount and particle size of CdS QDs by UV-light irradiation time (lambda > 320 nm) with excellent reproducibility. Owing to these unique features, sandwich-type solar cells using the CdS(PD)/mp-TiO2(photoanode showed a power conversion efficiency (eta) under simulated sunlight (AM 1.5, 100 mW cm(-2)) of up to 2.51% more than those for the cells employing CdS(SILAR)/mp-TiO2 (eta = 1.21%) and CdS(SAM)/mp-TiO2 (eta = 0.14%).
引用
收藏
页码:16837 / 16842
页数:11
相关论文
共 50 条
[1]   Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures [J].
Baker, David R. ;
Kamat, Prashant V. .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (05) :805-811
[2]   Tuning of the flat-band potentials of nanocrystalline TiO2 and SnO2 particles with an outer-shell MgO layer [J].
Bandara, J. ;
Pradeep, U. W. .
THIN SOLID FILMS, 2008, 517 (02) :952-956
[3]   Electron transfer dynamics in quantum dot/titanium dioxide composites formed by in situ chemical bath deposition [J].
Blackburn, JL ;
Selmarten, DC ;
Nozik, AJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (51) :14154-14157
[5]  
BUHKER N, 1984, J PHYS CHEM, V88, P3261
[6]   Sr3B2O6:Ce3+,Eu2+:: A potential single-phased white-emitting borate phosphor for ultraviolet light-emitting diodes [J].
Chang, Chun-Kuei ;
Chen, Teng-Ming .
APPLIED PHYSICS LETTERS, 2007, 91 (08)
[7]   Underpotential photocatalytic deposition: A new preparative route to composite semiconductors [J].
Chenthamarakshan, CR ;
Ming, Y ;
Rajeshwar, K .
CHEMISTRY OF MATERIALS, 2000, 12 (12) :3538-+
[8]   Distance-Dependent Electron Transfer in Tethered Assemblies of CdS Quantum Dots and TiO2 Nanoparticles [J].
Dibbell, Rachel S. ;
Watson, David F. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (08) :3139-3149
[9]   High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells [J].
Diguna, Lina J. ;
Shen, Qing ;
Kobayashi, Junya ;
Toyoda, Taro .
APPLIED PHYSICS LETTERS, 2007, 91 (02)
[10]   Photodeposition of CdS Quantum Dots on TiO2: Preparation, Characterization, and Reaction Mechanism [J].
Fujii, Masashi ;
Nagasuna, Kazuki ;
Fujishima, Musashi ;
Akita, Tomoki ;
Tada, Hiroaki .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (38) :16711-16716