An auxin-inducible gene from loblolly pine (Pinus taeda L.) is differentially expressed in mature and juvenile-phase shoots and encodes a putative transmembrane protein

被引:57
作者
Busov, VB
Johannes, E
Whetten, RW
Sederoff, RR
Spiker, SL
Lanz-Garcia, C
Goldfarb, B [1 ]
机构
[1] N Carolina State Univ, Dept Forestry, Raleigh, NC 27695 USA
[2] N Carolina State Univ, Dept Genet, Raleigh, NC 27695 USA
[3] N Carolina State Univ, Dept Bot, Raleigh, NC 27695 USA
关键词
adventitious root formation; auxin; gene expression (5NG4); maturation; nodulin; Pinus;
D O I
10.1007/s00425-003-1175-4
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
We have isolated a gene from loblolly pine, 5NG4, that is highly and specifically induced by auxin in juvenile loblolly pine shoots prior to adventitious root formation, but substantially down-regulated in physiologically mature shoots that are adventitious rooting incompetent. 5NG4 was highly auxin-induced in roots, stems and hypocotyls, organs that can form either lateral or adventitious roots following an auxin treatment, but was not induced to the same level in needles and cotyledons, organs that do not form roots. The deduced amino acid sequence shows homology to the MtN21 nodulin gene from Medicago truncatula. The expression pattern of 5NG4 and its homology to a protein from Medicago involved in a root-related process suggest a possible role for this gene in adventitious root formation. Homology searches also identified similar proteins in Arabidopsis thaliana and Oryza sativa. High conservation across these evolutionarily distant species suggests essential functions in plant growth and development. A 38-member family of genes homologous to 5NG4 was identified in the A. thaliana genome. The physiological significance of this redundancy is most likely associated with functional divergence and/or expression specificity of the different family members. The exact biochemical function of the gene is still unknown, but sequence and structure predictions and 5NG4::GFP fusion protein localizations indicate it is a transmembrane protein with a possible transport function.
引用
收藏
页码:916 / 927
页数:12
相关论文
共 56 条
[1]   Early genes and auxin action [J].
Abel, S ;
Theologis, A .
PLANT PHYSIOLOGY, 1996, 111 (01) :9-17
[2]   Analysis of xylem formation in pine by cDNA sequencing [J].
Allona, I ;
Quinn, M ;
Shoop, E ;
Swope, K ;
St Cyr, S ;
Carlis, J ;
Riedl, J ;
Retzel, E ;
Campbell, MM ;
Sederoff, R ;
Whetten, RW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (16) :9693-9698
[3]   Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J].
Kaul, S ;
Koo, HL ;
Jenkins, J ;
Rizzo, M ;
Rooney, T ;
Tallon, LJ ;
Feldblyum, T ;
Nierman, W ;
Benito, MI ;
Lin, XY ;
Town, CD ;
Venter, JC ;
Fraser, CM ;
Tabata, S ;
Nakamura, Y ;
Kaneko, T ;
Sato, S ;
Asamizu, E ;
Kato, T ;
Kotani, H ;
Sasamoto, S ;
Ecker, JR ;
Theologis, A ;
Federspiel, NA ;
Palm, CJ ;
Osborne, BI ;
Shinn, P ;
Conway, AB ;
Vysotskaia, VS ;
Dewar, K ;
Conn, L ;
Lenz, CA ;
Kim, CJ ;
Hansen, NF ;
Liu, SX ;
Buehler, E ;
Altafi, H ;
Sakano, H ;
Dunn, P ;
Lam, B ;
Pham, PK ;
Chao, Q ;
Nguyen, M ;
Yu, GX ;
Chen, HM ;
Southwick, A ;
Lee, JM ;
Miranda, M ;
Toriumi, MJ ;
Davis, RW .
NATURE, 2000, 408 (6814) :796-815
[4]   EMF1, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis [J].
Aubert, D ;
Chen, LJ ;
Moon, YH ;
Martin, D ;
Castle, LA ;
Yang, CH ;
Sung, ZR .
PLANT CELL, 2001, 13 (08) :1865-1875
[5]  
Ausubel FM, 1995, CURRENT PROTOCOLS MO
[6]   Suppression of inward-rectifying K+ channels KAT1 and AKT2 by dominant negative point mutations in the KAT1 α-subunit [J].
Baizabal-Aguirre, VM ;
Clemens, S ;
Uozumi, N ;
Schroeder, JI .
JOURNAL OF MEMBRANE BIOLOGY, 1999, 167 (02) :119-125
[7]  
Bancroft I, 2000, YEAST, V17, P1, DOI 10.1002/(SICI)1097-0061(200004)17:1<1::AID-YEA3>3.0.CO
[8]  
2-V
[9]   A Rab1 GTPase is required for transport between the endoplasmic reticulum and Golgi apparatus and for normal Golgi movement in plants [J].
Batoko, H ;
Zheng, HQ ;
Hawes, C ;
Moore, I .
PLANT CELL, 2000, 12 (11) :2201-2217
[10]   Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism [J].
Bennett, MJ ;
Marchant, A ;
Green, HG ;
May, ST ;
Ward, SP ;
Millner, PA ;
Walker, AR ;
Schulz, B ;
Feldmann, KA .
SCIENCE, 1996, 273 (5277) :948-950