Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3

被引:925
作者
Qiu, QS [1 ]
Guo, Y [1 ]
Dietrich, MA [1 ]
Schumaker, KS [1 ]
Zhu, JK [1 ]
机构
[1] Univ Arizona, Dept Plant Sci, Tucson, AZ 85721 USA
关键词
D O I
10.1073/pnas.122224699
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Maintaining low levels of sodium ions in the cell cytosol is critical for plant growth and development. Biochemical studies suggest that Na+/H+ exchangers in the plasma membrane of plant cells contribute to cellular sodium homeostasis by transporting sodium ions out of the cell; however, these exchangers have not been identified at the molecular level. Genetic analysis has linked components of the salt overly sensitive pathway (SOS1-3) to salt tolerance in Arabidopsis thaliana. The predicted SOS1 protein sequence and comparisons of sodium ion accumulation in wildtype and sosl plants suggest that SOS1 is involved directly in the transport of sodium ions across the plasma membrane. To demonstrate the transport capability of SOS1, we studied Na+/H+-exchange activity in wild-type and sos plants using highly purified plasma membrane vesicles. The results showed that plasma membrane Na+/H+-exchange activity was present in wild-type plants treated with 250 mM NaCl, but this transport activity was reduced by 80% in similarly treated sosl plants. In vitro addition of activated SOS2 protein (a protein kinase) increased Na+/H+-exchange activity in salt-treated wild-type plants 2-fold relative to transport without added protein. However, the addition of activated SOS2 did not have any stimulatory effect on the exchange activity in sosl plants. Although vesicles of sos2 and sos3 plants had reduced plasma membrane Na+/H+-exchange activity, transport activity in both increased with the addition of activated SOS2 protein. These results demonstrate that SOS1 contributes to plasma membrane Na+/H+ exchange and that SOS2 and SOS3 regulate SOS1 transport activity.
引用
收藏
页码:8436 / 8441
页数:6
相关论文
共 30 条
[1]   Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis [J].
Apse, MP ;
Aharon, GS ;
Snedden, WA ;
Blumwald, E .
SCIENCE, 1999, 285 (5431) :1256-1258
[2]   OPTICAL MEASUREMENTS OF DELTA-PH AND DELTA-PSI IN CORN ROOT MEMBRANE-VESICLES - KINETIC-ANALYSIS OF CL- EFFECTS ON A PROTON-TRANSLOCATING ATPASE [J].
BENNETT, AB ;
SPANSWICK, RM .
JOURNAL OF MEMBRANE BIOLOGY, 1983, 71 (1-2) :95-107
[3]   Sodium transport and salt tolerance in plants [J].
Blumwald, E .
CURRENT OPINION IN CELL BIOLOGY, 2000, 12 (04) :431-434
[4]   NA+/H+ ANTIPORT IN ISOLATED TONOPLAST VESICLES FROM STORAGE TISSUE OF BETA-VULGARIS [J].
BLUMWALD, E ;
POOLE, RJ .
PLANT PHYSIOLOGY, 1985, 78 (01) :163-167
[5]   Sodium transport in plant cells [J].
Blumwald, E ;
Aharon, GS ;
Apse, MP .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2000, 1465 (1-2) :140-151
[6]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[7]   The expanding family of eucaryotic Na+/H+ exchangers [J].
Counillon, L ;
Pouysségur, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (01) :1-4
[8]   Arabidopsis thaliana and Saccharomyces cerevisiae NHX1 genes encode amiloride sensitive electroneutral Na+-/H+ exchangers [J].
Darley, CP ;
van Wuytswinkel, OCM ;
van der Woude, K ;
Mager, WH ;
de Boer, AH .
BIOCHEMICAL JOURNAL, 2000, 351 :241-249
[9]   PHOSPHORYLATION OF THE C-TERMINAL DOMAIN OF THE NA+/H+ EXCHANGER BY CA2+/CALMODULIN-DEPENDENT PROTEIN KINASE-II [J].
FLIEGEL, L ;
WALSH, MP ;
SINGH, D ;
WONG, C ;
BARR, A .
BIOCHEMICAL JOURNAL, 1992, 282 :139-145
[10]   The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast [J].
Gaxiola, RA ;
Rao, R ;
Sherman, A ;
Grisafi, P ;
Alper, SL ;
Fink, GR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (04) :1480-1485