Marginalized transition models and likelihood inference for longitudinal categorical data

被引:83
作者
Heagerty, PJ [1 ]
机构
[1] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
关键词
marginal model; Markov chain; maximum likelihood;
D O I
10.1111/j.0006-341X.2002.00342.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Marginal generalized linear models are now frequently used for the analysis of longitudinal data. Semiparametric inference for marginal models was introduced by Liang and Zeger (1986, Biometrics 73, 13-22). This article develops a general parametric class of serial dependence models that permits likelihood-based marginal regression analysis of binary response data. The methods naturally extend the first-order Markov models of Azzalini (1994, Biometrika 81, 767-775) and prove computationally feasible for long series.
引用
收藏
页码:342 / 351
页数:10
相关论文
共 18 条
[1]   MATERNAL EMPLOYMENT AND USE OF PEDIATRIC-CLINIC SERVICES [J].
ALEXANDER, CS ;
MARKOWITZ, R .
MEDICAL CARE, 1986, 24 (02) :134-147
[2]  
AZZALINI A, 1994, BIOMETRIKA, V81, P767
[3]  
BARNDORFFNIELSE.OE, 1994, INFERENCE ASYMPTOTIC
[4]   APPROXIMATE INFERENCE IN GENERALIZED LINEAR MIXED MODELS [J].
BRESLOW, NE ;
CLAYTON, DG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) :9-25
[5]   GLOBAL CROSS-RATIO MODELS FOR BIVARIATE, DISCRETE, ORDERED RESPONSES [J].
DALE, JR .
BIOMETRICS, 1986, 42 (04) :909-917
[6]  
Diggle P. J., 2002, ANAL LONGITUDINAL DA
[7]  
FITZMAURICE GM, 1993, BIOMETRIKA, V80, P141, DOI 10.2307/2336764
[8]  
Heagerty PJ, 2000, STAT SCI, V15, P1
[9]   Lorelogram: A regression approach to exploring dependence in longitudinal categorical responses [J].
Heagerty, PJ ;
Zeger, SL .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (441) :150-162
[10]  
HUBER PJ, 1967, 5TH P BERK S MATH ST, V1, P221