Targeted deletion of BMK1/ERK5 in adult mice perturbs vascular integrity and leads to endothelial failure

被引:233
作者
Hayashi, M
Kim, SW
Imanaka-Yoshida, K
Yoshida, T
Abel, ED
Eliceiri, B
Yang, Y
Ulevitch, RJ
Lee, JD
机构
[1] Scripps Res Inst, Dept Immunol, La Jolla, CA 92037 USA
[2] Mie Univ, Sch Med, Dept Pathol, Tsu, Mie 514, Japan
[3] Univ Utah, Sch Med, Div Endocrinol, Salt Lake City, UT USA
[4] La Jolla Inst Mol Med, San Diego, CA USA
[5] Johnson & Johnson Consumer Prod Inc, Pharmaceut Res & Dev, San Diego, CA USA
关键词
D O I
10.1172/JCI200419890
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Big mitogen-activated protein kinase 1 (BMK1), also known as ERK5, is a member of the MAPK family. Genetic ablation of BMK1 in mice leads to embryonic lethality, precluding the exploration of pathophysiological roles of BMK1 in adult mice. We generated a BMK1 conditional mutation in mice in which disruption of the BMK1 gene is under the control of the inducible Mx1-Cre transgene. Ablation of BMK1 in adult mice led to lethality within 2-4 weeks after the induction of Cre recombinase. Physiological analysis showed that the blood vessels became abnormally leaky after deletion of the BMK1 gene. Histological analysis revealed that, after BMK1 ablation, hemorrhages occurred in multiple organs in which endothelial cells lining the blood vessels became round, irregularly aligned, and, eventually, apoptotic. In vitro removal of BMK1 protein also led to the death of endothelial cells partially due to the deregulation of transcriptional factor MEF2C, which is a direct substrate of BMK1. Additionally, endothelial-specific BMK1-KO leads to cardiovascular defects identical to that of global BMK1-KO mutants, whereas, surprisingly, mice lacking BMK1 in cardiomyocytes developed to term without any apparent defects. Taken together, the data provide direct genetic evidence that the BMK1 pathway is critical for endothelial function and for maintaining blood vessel integrity.
引用
收藏
页码:1138 / 1148
页数:11
相关论文
共 60 条
[1]   c-Src is required for oxidative stress-mediated activation of big mitogen-activated protein kinase 1 (BMK1) [J].
Abe, J ;
Takahashi, M ;
Ishida, M ;
Lee, JD ;
Berk, BC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (33) :20389-20394
[2]   Big mitogen-activated protein kinase 1 (BMK1) is a redox-sensitive kinase [J].
Abe, J ;
Kusuhara, M ;
Ulevitch, RJ ;
Berk, BC ;
Lee, JD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (28) :16586-16590
[3]   Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart [J].
Abel, ED ;
Kaulbach, HC ;
Tian, R ;
Hopkins, JCA ;
Duffy, J ;
Doetschman, T ;
Minnemann, T ;
Boers, ME ;
Hadro, E ;
Oberste-Berghaus, C ;
Quist, W ;
Lowell, BB ;
Ingwall, JS ;
Kahn, BB .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (12) :1703-1714
[4]   Essential role of p38α MAP kinase in placental but not embryonic cardiovascular development [J].
Adams, RH ;
Porras, A ;
Alonso, G ;
Jones, M ;
Vintersten, K ;
Panelli, S ;
Valladares, A ;
Perez, L ;
Klein, R ;
Nebreda, AR .
MOLECULAR CELL, 2000, 6 (01) :109-116
[5]   VASCULAR ENDOTHELIAL GROWTH-FACTOR ACTS AS A SURVIVAL FACTOR FOR NEWLY FORMED RETINAL-VESSELS AND HAS IMPLICATIONS FOR RETINOPATHY OF PREMATURITY [J].
ALON, T ;
HEMO, I ;
ITIN, A ;
PEER, J ;
STONE, J ;
KESHET, E .
NATURE MEDICINE, 1995, 1 (10) :1024-1028
[6]   The transcription factor MEF2C-null mouse exhibits complex vascular malformations and reduced cardiac expression of angiopoietin 1 and VEGF [J].
Bi, WZ ;
Drake, CJ ;
Schwarz, JJ .
DEVELOPMENTAL BIOLOGY, 1999, 211 (02) :255-267
[7]  
Bird IN, 1999, J CELL SCI, V112, P1989
[8]   Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins [J].
Black, BL ;
Olson, EN .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :167-196
[9]   Cardiac endothelial-myocardial signaling: Its role in cardiac growth, contractile performance, and rhythmicity [J].
Brutsaert, DL .
PHYSIOLOGICAL REVIEWS, 2003, 83 (01) :59-115
[10]   Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme [J].
Camenisch, TD ;
Spicer, AP ;
Brehm-Gibson, T ;
Biesterfeldt, J ;
Augustine, ML ;
Calabro, A ;
Kubalak, S ;
Klewer, SE ;
McDonald, JA .
JOURNAL OF CLINICAL INVESTIGATION, 2000, 106 (03) :349-360