Divergence of classical trajectories and weak localization

被引:196
作者
Aleiner, IL
Larkin, AI
机构
[1] UNIV MINNESOTA,INST THEORET PHYS,MINNEAPOLIS,MN 55455
[2] LD LANDAU THEORET PHYS INST,MOSCOW 117940,RUSSIA
来源
PHYSICAL REVIEW B | 1996年 / 54卷 / 20期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.54.14423
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the weak-localization correction (WLC) to transport coefficients of a system of electrons in a static long-range potential (e.g., an antidot array or ballistic cavity). We found that the weak-localization correction to the current response is delayed by the large time t(E)=lambda(-1)/Inh/, where lambda is the Lyapunov exponent. In the semiclassical regime t(E) is much larger than the transport lifetime. Thus, the fundamental characteristic of the classical chaotic motion, Lyapunov exponent, may be found by measuring the frequency or temperature dependence of WLC.
引用
收藏
页码:14423 / 14444
页数:22
相关论文
共 36 条
  • [1] SCALING THEORY OF LOCALIZATION - ABSENCE OF QUANTUM DIFFUSION IN 2 DIMENSIONS
    ABRAHAMS, E
    ANDERSON, PW
    LICCIARDELLO, DC
    RAMAKRISHNAN, TV
    [J]. PHYSICAL REVIEW LETTERS, 1979, 42 (10) : 673 - 676
  • [2] Altshuler B.L., 1985, ELECT ELECT INTERACT
  • [3] Altshuler B.L., 1983, QUANTUM THEORY SOLID
  • [4] MAGNETORESISTANCE AND HALL-EFFECT IN A DISORDERED 2-DIMENSIONAL ELECTRON-GAS
    ALTSHULER, BL
    KHMELNITZKII, D
    LARKIN, AI
    LEE, PA
    [J]. PHYSICAL REVIEW B, 1980, 22 (11): : 5142 - 5153
  • [5] ALTSHULER BL, 1986, ZH EKSP TEOR FIZ, V64, P127
  • [6] Quantum chaos, irreversible classical dynamics, and random matrix theory
    Andreev, AV
    Agam, O
    Simons, BD
    Altshuler, BL
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (21) : 3947 - 3950
  • [7] ANDREEV AV, UNPUB
  • [8] [Anonymous], ZH EKSP TEOR FIZ
  • [9] SEMICLASSICAL ANALYSIS OF THE CONDUCTANCE OF MESOSCOPIC SYSTEMS
    ARGAMAN, N
    [J]. PHYSICAL REVIEW LETTERS, 1995, 75 (14) : 2750 - 2753
  • [10] Semiclassical analysis of the quantum interference corrections to the conductance of mesoscopic systems
    Argaman, N
    [J]. PHYSICAL REVIEW B, 1996, 53 (11): : 7035 - 7054